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CHAPTER 5 

FINITE-DIFFERENCE METHOD FOR 1-D, 2-D AND 3-D TELEGRAPH 

EQUATIONS 

 

5.1 Introduction 

 

If we recall the first order equations in the general form: 
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this equation is similar to solving a first order ODE, and since these equations are rarely 

encountered in physics, we will not spend any more time on them. The most general 

second order PDE can be written in the form of Eq. (3.1). Notice that Eq. (3.1) is similar 

to the Quadratic Equation (QE) 

.22 dcybxyax   

Solutions of this equation fall into three classes, depending on the relations between a, b 

and c. When acb 42  , the equation describes an ellipse; acb 42  describes a 

hyperbola. A special case arises when acb 42  . In this case the resulting shape is 

parabolic. A typical parabolic equation is given in Eq. (3.11) – Eq. (3.12). Hence, an 

example of the hyperbolic equation takes the form of the wave equation 
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Notice that we again have to use a 2-D grid to solve this equation, only now we have to 

allow for the solution to move both forwards and backwards in time. In order to solve 

the hyperbolic equation, two sets of initial conditions must be specified. While they can 

take on many forms, for a traveling wave, the initial position and velocity of the wave 

pulse are the most frequently stated conditions. From the hyperbolic equation, we have 

the Telegraph Equation considered in this thesis work. 
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In this chapter we shall treat the Telegraph Equation in 1-D, 2-D and 3-D 

dimensions and its stability analysis for 2-D and 3-D Equations. The Telegraph 

Equation deals with an electrical transmission line with constant linear parameters 

resistance (R), inductance (L), capacitance (C) and leakage conductance (G) in both the 

space and time domains. A number of iterative methods are developed in the literature 

to solve the Telegraph Equation using iterative solution. Some of these iterative 

schemes are employed in various parallel platforms (Evans & Hassan (2003), Aloy et 

al., (2007) and Mohanty et al., (1995)). The speed of convergence of iterative scheme is 

examined for the synchronous communication approaches in parallel environment. 

Here, we used the finite difference method that provides approximation solutions for the 

Telegraph Equation such that the derivatives at a point are approximated by difference 

quotients over a small interval. Each data point in the grid is given an initial value at the 

beginning of the execution. As time goes by, the value at each grid point is updated 

according to the difference equation provided based on the time step used in time 

differentiation and the order used in spatial differentiation. Hence, different 

dependencies among the grid points are resulted. This regular relationship among the 

data points is where data parallelization can be captured (Peizong & Kedem, (2002)).  

 This chapter begins by discussing the approximation of derivative by finite 

difference method for the 1-D. We then went further to develop the three level implicit 

method and the IADE-MF scheme for the 1-D case. Section 5.2 discusses the 2-D case 

Telegraph Equation and alternating schemes on 2-D case with stability analysis for the 

2-D case given in section 5.3 with its linear runtime. Section 5.4 introduces the 3-D 

Equation and section 5.5 gives the ADI scheme on 3-D Equation. Section 5 briefs on the 

stability analysis for 3-D ADI scheme on 3-D Telegraph Equation with linear runtime. 
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5.1:1 1-D Telegraph Equation  

 

We seek to discretize the second order 1-D Telegraph Equation in the form of general 

three level implicit schemes (Evans & Hassan (2003)): 
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where ( R ) is the measure of the opposition to the passage of a steady electrical current, 

(L) is the property of an electrical circuit where a change in the current flowing through 

that circuit induces an electromotive force that opposes the change in current, (C) is the 

ability to hold an electric charge and (G) is the conductance of the path over which 

leakage current flows. 

 

5.1:2 Three-Level Implicit Schemes on 1-D Telegraph 

 

A stable finite difference scheme in the form of the general three level implicit formula 

approximating (5.1) at the point(iΔx, jΔt) . Let ,x and t be the grid spacing in the x 

and t directions, where mx /1 , m  is a positive integer. The approximation values 

jiU , of the solution ),( txU  for Eq.(5.1) are to be computed, where 

 ,2,1,,,2,1,0,  ktktmixix ki  the difference scheme is given by: 
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                    (5.2) 

whereα is called the weighting factor and takes the value of 1/ 4α  for stability. The 

order of scheme is 2 2O (Δx) +(Δt)    for 1/ 4α=  and 1/ 2 . On expanding Eq. (5.2) we 

obtain: 
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which gives a tridiagonal system of equations that can be displayed by the matrix 

),,( bac and the right hand side fRHS)(  where  
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the U values on the first time level are given by the initial condition. Values on the 

second time level are obtained from applying the forward difference approximate of the 

first order, at 0t . 
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giving ii,i, gΔt+U=U .01 . Solutions on the third and subsequent time levels are generated 

by applying the LU algorithm.   
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5.1:3 Formulation of the IADE Scheme (Mitchell-Fairweather Variant) 

 

With the Mitchell-Fairweather variant (Sahimi et al., (2001)) accuracy can be improved. 

The matrices derived from the discretization of Eq. (5.3) resulting to a matrix form is 

tridiagonal. Hence, at each of the )2/1( k and )1( k  time levels, the matrix can be 

decomposed into 2121
6

1
GGGG  , where 1G and 2G are lower and upper bidiagonal 

matrices given respectively by: 

                                                   ,,,1, 21 iii ueGandlG                                        
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for 1,2, , 1i m  . Hence, by taking p as an iteration index and for a fixed acceleration 

parameter 0r , the IADE scheme is therefore executed at each of the intermediate 

levels by effecting the following computations: 

i) at level (p+1/2) 
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ii) at level (p+1) 
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The IADE algorithm is completed explicitly by using the required equations

 

at levels 

)2/1( p  and )1( p  in alternate sweeps along the points in the interval )1,0(  until 

convergence is reached.  

 

5.2 2-D Telegraph Equation 

 

Mohanty et al., (1995) and Aloy et al., (2007) have worked on this area extensively 

(sequentially). We consider the second order Telegraph Equation: 
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with initial condition 

                                     ( , ,0) ( , )v x y f x y                                                                                            

and boundary conditions 
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where a RC GL  , let tandyx  ,  be the grid spacing in the yx, and t directions, 

while ,1,1 nymx   m and n are the positive integers. The approximation values 

, ,i j kv of the solution ( , , )v x y t for the problem Eq. (5.4) and their conditions are to be 

computed at the grid points ),,( kji tyx  where  

  ;,...1,0,,,...,2,1,0, njjjymixix ji  1b LC , ...,2,1,  ktktk  
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for simplicity, we take ,dyx  and sometimes denote ),,( kji tyx by ).,,( kji

Among the finite difference method for the numerical solution of the problem Eq. (5.4), 

the classical explicit method is suitable in any case for parallel computing, but the 

method is stable only when ,412  dt  thus t must be restricted to a very small 

value.  The central and forward operator is given by: 
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extending the finite difference scheme on the Eq. (5.5) becomes: 

1 1 1 1 1 1 1 1 1 1

, , , , , 1, , 1, , 1 , , 1

2 2 2

2 2 2
0

( ) 2 ( ) ( )

n n n n n n n n n n n

i j i j i j i j i j i j i j i j i j i j i jv v v v v v v v v v v
a b

t t x y

         

   
        

    
     

      (5.6) 

although this simple implicit scheme is unconditionally stable, we need to solve a penta-

diagonal system of algebraic equations at each time step. Therefore, the computational 

time is huge.    

 

5.2:1 ADI Scheme  

 

In this section, we will derive the 2-D ADI scheme of the simple implicit Finite 

Difference Time Domain (FDTD) method by using a general ADI procedure (Peaceman 

& Rachford, 1955) applied on Eq. (5.4) can be rewritten as: 
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where the operators of ,, sAI m and the constants of 1,CCo are defined as: 
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the constant of x , and y are:  
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sub-iteration 1 is given by: 
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let xx cba   ,21 . For various values of i  and j , Eq. (5.15) can be written 

in a more compact matrix form at the )2/1( k time level as: 
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at the (k + 1) time level, sub-iteration 2 is given by: 
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let yy cba   ,21 . For various values of i  and j , Eq. (5.17) can be written 

in a more compact matrix form as: 
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this is a prediction of 
1

,

n
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by the extrapolation method. Splitting by using an ADI 

procedure as in (Sahimi et. al., 2006), we get a set of recursion relations as follows: 
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is the intermediate solution and the desired solution is
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However, expanding 1A and 2A  on the left side of Eq. (5.20) and Eq. (5.21), we get the 

2-D ADI algorithm.  

 

The 2-D ADI Algorithm 
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End 

 

Fig. 5.1: The 2-D ADI Algorithm 

 

5.2:2 IADE-DY Scheme 

 

By applying the IADE-DY of (Sahimi et. al (2001)), the matrices derived from the 

discretization resulting to A  in Eq. (5.16) and B  in Eq. (5.18) are respectively 

tridiagonal of size )( mm and )( nn . Hence, at each of the )2/1( k and )1( k time 

levels, these matrices can be decomposed into 
1 2 1 2

1
,

6
G G G G  where 1 2G and G are 

lower and upper bidiagonal matrices given respectively by: 

                                  1 2[ ,1], [ , ],i i iG l and G e u                                              (5.22) 
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where 
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hence, by taking p  as an iteration index, and for a fixed iteration parameter 0r , 

where r  is given by (Evans (2003)) as ,.vur   where u and v  in the below 

expressions are the minimum and maximum eigenvalues of the submatrices of 1G  and 

2G  for the two-stage IADE-DY scheme of the form: 
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can be applied on each of the sweeps Eq. (5.20) and Eq. (5.21). Based on the fractional 

splitting strategy of D‟Yakonov, the iterative procedure is accurate and is found to be 

stable and convergent. By carrying out the relevant multiplications in Eq. (5.23), the 

following equations for computation at each of the intermediate levels are obtained: 

(i) at the ( 1/ 2)thp iterate, 
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where,  

       
^ ^6 (12 )

, , 1 , , , 1,2, ,
6 6

i i

r r r
g h d r s r g s r ge i m

 
          

and 

                             , 1,2, , 1i i i iv gl w gu i m      . 

(ii) at the ( 1)thp  iterate, 
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               (5.25)   

the two-stage iterative procedure in the IADE-DY algorithm corresponds to sweeping 

through the mesh involving at each iterates the solution of an explicit equation. This is 

continued until convergence is reached, that is when the convergence requirement 




 )()1( pp uu  is met, where   is the convergence criterion.  

 

5.2:3 MF-DS Scheme 

 

According to (Mitchell & Fairweather (1964)) the numerical representative of Eq. 

(5.20) and Eq. (5.21) is as follows: 
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the horizontal sweep Eq. (5.26) and the vertical sweep Eq. (5.27) formulas can be 

manipulated and written in a compact matrix.  Let 
212

1
,

6

5 x

x cba


  . For 

various values of i and j , Eq. (5.26) can be written in a more compact matrix form at 

the )2/1( k time level as in Eq. (5.16). Similarly, let 
212

1
,

6

5 y

y cba


   for 

various values of i  and j , Eq. (5.27) can be written in a more compact matrix form at 

the )1( k time level as in Eq. (5.18). By defining 
212

1
,

6

5 y

y cba


   the 

resulting tridiagonal system of equations are solved using similar iterative procedure as 

in the DS-PR, that is, the two-stage IADE-DY algorithm. 
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5.3 Introduction to 3-D Telegraph Equation 

 

In this section, we present the implementation of an unconditionally stable three-

dimensional (3-D) finite difference method on 3-D Telegraph Equation using 3-D ADI 

scheme. The principle of the alternating direction implicit (ADI) technique that has been 

used in formulating an unconditionally stable two-dimensional is applied. Unlike the 

conventional ADI algorithms, the alternation is performed in respect to coordinate 

direction.  In reference to (Mohanty et. al. (1995)), the numerical solution of 3-D 

Alternating-Direction-Implicit (3-D ADI) method is obtained. The method is developed 

from the judicious splitting of the implicit equations derived from the finite difference 

discretization of the partial differential equations of the Telegraph Equation in 3-D. The 

method employs a splitting strategy which is applied alternately at each half time step. 

We examine the application and numerical performance of the 3-D ADI scheme.  

We consider the second order Telegraph Equation: 
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where a RC GL  , let zandyx  , be the grid spacing in the zyx ,, and t directions, 

where mzyx /1 , m  is a positive integer.  Hence, we can solve Eq. (5.28) by 

extending the 1-D simple implicit finite difference method by (Smith, 1978) to the 

above 3-D Telegraph Equation, Eq. (5.28) becomes: 
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although this simple implicit scheme is unconditionally stable, we need to solve a 

heptadiagonal system of algebraic equations at each time step. Therefore, the 

computation time is extremely huge.  

 

5.4 ADI Scheme on 3-D Telegraph Equation (Mohanty, (2009)) 

 

In this section, we will derive the 3-D ADI method of the simple implicit finite 

difference method by using (Peaceman & Rachford, (1955)) extended to Eq. (5.28). The 

ADI method is a well-known method for solving PDE. The main feature of ADI is to 

sweep directions alternatively. In contrast to the standard finite-difference formulation 

with only one iteration to advance from the nth  to thn )1(  time step, the formulation of 

the ADI method requires multilevel intermediate steps to advance from the nth  to 

thn )1(  time step. Eq. (5.29) can be rewritten as: 
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where the operators of ,, AmsI and the constants of 1,CCo are define as: 
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The constant of x , y and z are: 
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The 3-D ADI Algorithm 
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     Fig. 5.2: The 3-D ADI Algorithm 
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which is a prediction of 
1

,,

n

kjiv by the extrapolation method.  

Then splitting Eq. (5.30) by using an ADI procedure, we get a set of recursion relations 

as follows: 
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where 
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kji vv  are the intermediate solutions and the desired solution is

)3(1

,,

1

,,

  n

kji

n

kji vv . Finally, expanding 21, AA and 3A on the left side of Eq. (5.41) and Eq. 

(5.43), we get the 3-D ADI algorithm as in Fig. 5.2.  

 

5.5 Parallel Performance Analysis of the Algorithms 

 

The following authors gave good illustrations on measures of performance for parallel 

programs; Anderson et al., (1998); Burns (1988), Flynn (1972), Foster (1995), Barry 

(2003), Ananth et al., (2003), Amdahl (1967), Sun (1991), Akl (1997) and Pacheco 

(1997). Parallel computing has always had its skeptics. First, Grosch‟s Law had to be 

overturned by making computers four times as fast in order to sell them for two times as 

much. Grosch‟s Law was repeated by large scale integration of electronics and then 

Von-Neumann‟s bottleneck had to be dealt with. A Von-Neumann computer is limited 

in performance by the narrow connection between the processor and its memory. But 

Amdahl‟s Law (Amdahl, (1967)) predicted very limited improvement in performance 

because the speed of a computer was limited by its slowest (sequential) part. Regardless 

of the number of processors, the problem could never be solved faster than naturally 

occurring serial part would permit. Amdahl‟s Law was shown to be invalid in certain 

very interesting cases – cases where the problem size could be increased and the 

regularity of the problem could be used to feed as many parallel processors as the 

problem needed. Thus, large matrix calculation could grow even larger without 

sacrificing speed, if more and more processor were “thrown at the problem”. The 

Gustafson – Basis Law stimulated great interest once again in parallelism. This brings 

up the issue of performance measurement. Parallel computing redefines traditional 

measures such that Million Instructions Per Second (MIPS) and Million Floating Point 
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Operations per Seconds (MFLOPS). A new measure of performance is needed to relate 

parallel computing to performance. Recognizing the performance limitation of using 

commodity interfaces in workstation clusters has lead several researchers to design 

High Performance network interface cards (NICS), examples includes Blumrich et al., 

(1995), Bodon et al., (1995), Gillett & Kaufmann (1997), Burns (1988). Martin et al., 

(1997) made a detailed study of the effects of communication latency, overheads, and 

bandwidth in cluster architecture. They improved the communication performance of 

the communication system rather than invest in doubling the machine performance. The 

most often quoted measure of parallel performance is the speed-up curve. This is 

computed by dividing the time to compute a solution to a certain problem using one 

processor by the solution time using N processors in parallel. According to Barry & 

Michael (2003) and Lewis (2001), measures of performance were discussed explicitly.  

 

5.5:1 Parallel Strategies  

 

We essentially focus on the parallelization of the methods stated earlier in the abstract. 

Striped partitioning and Cell partitioning are two main decomposition approaches for 

solving on parallel computers. For ADI method striped partitioning turns out to be both 

numerically uneconomical for implementation and non-scalable. An individual tri-

diagonal system of equations is most easy to solve if all the data is residing in one 

processing element (PE). In the (y) striped partition approach for each subset in y-

direction, this can be achieved by assigning pn  equation systems to each PE. But in 

the x-direction the (y) stripped partition implies that for each tri-diagonal system of 

equations each holds only pn / equations. Hence, this demand a transpose of nn  grid 

information which effectively turns out to be a costly communication process i.e. 

)( 2 pnO which is of the order of the computation and hence not desirable.  
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In the cell partitioning approach we do away with the need for such global 

communication by suitably re-grouping the PEs under column communicators to row 

communicators and thereby requiring only local communications. The details of the 

parallel implementation under cell partitioning strategy are as follows: Assume that 

there are 2k  processors arranged in )( kk  grid. The domain in which solutions are 

sought is treated as nn  grid. Say, k = 4 for the parallel execution of the ADI method k 

row communicators and k column communicators are defined. As in Fig. 5.3, during the 

first sweep the processors are grouped under row communicators and in the second 

sweep they are re-grouped under the column communicators. In each of the two steps, 

the set of tri-diagonal is also divided into k parts. Each of these k sub-systems of 

equations is further divided into k-sub-matrices and is assigned to different processors. 

The distribution of the matrix systems among the various processors under row and 

column communicators during the two steps is shown in Fig. 5.4.   
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Fig.5.4 Distribution of the matrix systems among the )( kk   processors under 

the row and column communication groups. 

 

As has been stated above, the effective parallel implementation of the algorithms 

considered in this work should lead to a substantial increase in the computational count 

per data exchange, major reduction in synchronization frequency and subsequent 

decrease in communication sessions. A typical parallel implementation involves the 

assignment of a block of grids to each task to a surface so that each task only 

communicates with its limited nearest neighbors. Only the top, bottom, left and right 

surfaces of the block need to be exchanged between neighboring tasks. Hence, it is 

important to maintain load balancing in the distribution of n grids to tasks .,, 21 pPPP 

The data decomposition of the algorithms is run simultaneously at every time level, 

where each task is allocated pn  grids. It proceeds for every task at each time level 

until the local error and the approximate solution are computed at the last time level. 
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These tasks then send the local errors to the master, which in turn processes the global 

error.  

However, on the MPI and PVM parallel implementation of the various schemes 

are based on one master and many tasks. The master program is responsible in 

constructing the n grid sizes, computing the initial values, partitioning the grid into 

blocks of surfaces, assigning these blocks to the p task modules, distributing the task to 

different processors and receiving local errors from the tasks. Each block that is 

assigned to a task module is composed of pn blocks. A task process starts 

computations after it receives a work assignment. A task module )( pff  performs the 

algorithm iterations on the grid points of the assigned block which is composed of 

surfaces with indices below: 

  
p

fn
startSF f

)1(
)(


  and ,1)( 

p

nf
endSF f  

where SF refers to the surface. The task f will transmit to its upper neighbor 

)(),1( startSFftask f  and receive from )(1)( 1 endSFstartSF ff  and to it lower 

neighbors )(),1( endSFftask f and receive from it )(1)( 1 startSFendSF ff  . 

Since multiple copies of the same task code run simultaneously, the tasks will 

exchange data with their neighbors at different times. At this point, the barrier function 

is called by the MPI and PVM library routines for synchronization. The tasks will repeat 

the above procedure, until the local convergence criterion is met. The criterion 

requirement computed in the task f is as follows, 

    .),(,max )(

,

)1(

, fjiuujih p

ji

p

ji    

The tasks will return all its local errors to the master module. After receiving the locally 

converged blocks from the tasks, the master module checks whether the global 

convergence is satisfied.  

  ],,0[,,]][[ njijih    
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where  .),(,max]][[ )(

,

)1(

, fjiuujih p

ji

p

ji   .  

This procedure is repeated and the system terminates if a global convergence is reached. 

Otherwise, the master repartitions the blocks and reassigns them to the tasks. More of 

this parallel implementation can be found in (Barry & Michael (2003), Quinn (2001) 

and Sahimi et al., (2001)).  

 

5.5:2 Parallel Computation of the Algorithms 

 

To correlate the communication activity with computation, we counted events between 

significant PVM/MPI call sites. The execution overhead decreases at the same rate that 

the number of tasks increases, which indicates good scaling. All the required input files 

are generated during the partitioning phase. Each processor reads the corresponding 

input file and grid file and performs computation on the local domain. At the end of the 

computation of each phase, data is exchanged between the neighboring processors using 

the libraries and computation for the next phase proceeds in parallel in each processor, 

see (Bin Jia, (2009)) . For each processor, if the boundary data from time (t-level) to 

time (t-1) have not yet arrived, the node computes part of the points in time t  which do 

not make use of the boundary data (pre-computation). The idea of pre-computation is to 

calculate portion of points in time t  before all the boundary points arrived. When the 

pre-computation is completed at time t , and the data has not yet arrived, the node can 

pre-compute the data at time )1( t using the available data from time )1(  levelt  to 

time t . This process is repeated until no data can be pre-computed anymore. It is 

necessary to allocate additional memory to hold the pre-computed results. 1 level of pre-

computation is sufficient such that a maximum overall reduction in elapsed time can be 

achieved. For the two-phase algorithm, the total time used in time step ),(, 2 nTn p  is 

given by: 
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               )()()()()(2 nTnTnTnTnT recvwaitsendcompp                                            (5.44) 

where compT  is the computation time, sendT  is the time used in sending the messages, 

waitT  is the time used by the platform in waiting for the incoming messages, and recvT  is 

the time used in processing the incoming messages. Clearly, there is a period of idle 

time during the )(nTwait period, and it is possible to perform pre-computation so as to 

overlap )(nTwait and ).1( nTcomp  It is impossible to overlap )(nTwait and )(nTrecv since 

the platform cannot process the incoming message before they arrive. Similarly, it is 

impossible to overlap )(nT epostcomput and )1( nTsend  since the data required to be sent in 

time )1( n  is not ready. Considering two cases, we have: 

Case 1. :)1()(   nTnT computeprewait  After pre-computation at time step )1( n  is 

computed, the message at time step n  arrives. Thus, no waiting time is needed for 

incoming messages, and the elapsed time is: 

                
)()()(

)()()()()(

nTnTnT

nTnTnTnTnT

recvsendcomp

recvprecomputesendepostcomputbest




                          (5.45) 

where )(nT epostcomput  is the computation time of the points in time step n  that cannot be 

computed during the pre-computation phase. Note that the term )(nTcompute does not 

appear in the equation because it is decomposed into two terms, )(nT computepre  and

)(nT epostcomput . The above term is the shortest elapsed time achievable since all the three 

components involve computations and thus cannot be overlapped. 

Case 2. :)1()(  nTnT precomputewait  In this case, the computation time is less than the 

waiting time. The shortest time achievable in each time step is: 

                     )()()()( nTnTnTnTT postcomputrecvwaitsendbest                                    (5.46) 

here, )(nTprecompute  is included into )1( nTwait while )(nT epostcomput remains distinct. 

Although it is possible to perform more levels of pre-computation during the )(nTwait
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period, this waiting period cannot be reduced further since the incoming messages 

arrive only after this period (i.e., )(nTrecv  cannot be started before )(nTwait ends).  

Following the above argument, it is easy to see that 1 level of pre-computation is 

sufficient to obtain the shortest elapsed time since performing more than 1 level of pre-

computation can only shift some computations earlier.  

 

5.6 Parallel Performance Measurement of the Algorithms 

 

In this section, we measure the effectiveness and performance between the numerical 

methods under considerations. More on parallel performance can be found in Rocco et 

al., (2005).  

 

5.6:1 Speedup, Efficiency and Effectiveness  

 

In this work, speedup, efficiency and effectiveness are terms necessary to explain the 

performance of our numerical algorithms on distributed platforms. The performance 

metric most commonly used is the speedup and efficiency which gives a measure of the 

improvement of performance experienced by an application when executed on a parallel 

system (Rajamony & Cox (1997) and Womble (1990)). Speedup is the ratio of the serial 

time to the parallel version run on N processors. Efficiency is the ability to judge how 

effective the parallel algorithm is expressed as the ratio of the speedup to N processors. 

The concept of speedup has yet to find a widely accepted definition. In traditional 

parallel systems it is widely define as: 

                  
n

nS
nE

nT
sT

nS
)(

)(,
)(

)(
)(                                                       (5.47) 

where )(nS is the speedup factor for the parallel computation, )(sT is the CPU time for 

the best serial algorithm, )(nT is the CPU time for the parallel algorithm using N
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processors, )(nE  is the total efficiency for the parallel algorithm. However, this simple 

definition has been focused on constant improvements. A generalized speedup formula 

is the ratio of parallel to sequential execution speed. A thorough study of speedup 

models together with their advantages and disadvantages is presented by Sahni (1996) 

and observed that speedup is normally defined as the execution time of the best 

sequential algorithm also known as absolute speedup, therefore implying that the 

sequential and parallel might be different. A different approach known as relative 

speedup, considers the parallel and sequential algorithm to be the same. While the 

absolute speedup calculates the performance gain for a particular problem using any 

algorithms, relative speedup focuses on the performance gain for a specific algorithm 

that solves the problem. The total efficiency according to (Dou & Phan-Thien (1997)) is 

usually decomposed into the following equations 

                              ),()()()( nEnEnEnE loadparnum                                                    (5.48) 

where numE  is the numerical efficiency, represents the loss of efficiency relative to the 

serial computation due to the variation of the convergence rate of the parallel 

computation. loadE  is the load balancing efficiency, which takes into account the extent 

of the utilization of the processors, and parE  is the parallel efficiency, which is define as 

the ratio of CPU time taken on one processor to that on N  processors. The parallel 

efficiency and the corresponding speedup are commonly written as follows: 

                          
n

nS
nE

nT
T

nS par
parpar

)(
)(,

)(
)1(

)(                                       (5.49) 

the parallel efficiency takes into account the loss of efficiency due to data 

communication and data management owing to domain decomposition. The CPU time 

for the parallel computations with N  processors can be written as follows: 

                        )()()()( nTnTnTnT scsdm                                                             (5.50) 
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where )(nTm  is the CPU time taken by the master program, )(nTsd  is the average slave 

CPU time spent in data communication in slaves, )(nTsc  is the average CPU time 

expressed in computation in slaves. Generally,  

                      .
)1(

)(),1()(),1()(
n

T
nTTnTTnT sc

scsdsdmm                          (5.51) 

Therefore, the speedup can be written as: 
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                             (5.52) 

where ),1()1()1( sdmser TTT  which is the part that cannot be parallelized. This is called 

Amdahl‟s law, showing that there is a limiting value on the speedup for a given 

problem. The corresponding efficiency is given by: 
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                           (5.53) 

the parallel efficiency represents the effectiveness of the parallel program running on 

N  processors relative to a single processor. However, it is the total efficiency that is of 

real significance when comparing the performance of a parallel program to the 

corresponding serial version. Let )1(No

sT denotes the CPU time of the corresponding 

serial program to reach a prescribed accuracy with No iterations, and )(1 nT
LN

BB denotes 

the total CPU time of the parallel version of the program with B blocks run on N  

processors, to reach the same prescribed accuracy with Ni iterations, including any idle 

time. The superscript L acknowledges degradation in performance due to the load 

balancing problem. The total efficiency can be decomposed as follows: 
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where )(1 nT
N

BB has the same meaning as )(1 nT
LN

BB except the idle time is not included. 

Comparing Eq. (5.51) and Eq. (5.48), we obtain: 
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when B=1 and n = 1, Tm(1) + Tsd(1) << Tsc(1), then .0.1)1(/)1(1 
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                                                       (5.56) 

We call Eq. (5.56) domain decomposition efficiency (DDE), which includes the 

increase of CPU time induced by grid overlap at interfaces and the CPU time variation 

generated by DD techniques. 

 To obtain a high efficiency, the slave computational time )1(scT  should be 

significantly larger than the serial time .serT  The CPU time for the master task and the 

data communication is constant for a given grid size and sub-domain. Therefore, the 

task in the inner loop should be made as large as possible to maximize the efficiency. 

The speedup and efficiency obtained for various grid sizes for the PVM and the MPI 

implementations are listed in section 6, showing different meshes for different 

problems. The figures show graphical representation of the lower mesh sizes. In the 

tables, we also listed the elapsed time for the master task, ,wT the master CPU time, ,mT

and the slave data communication time, ,sdT  all in seconds.  

 The effectiveness is given by: 

                          nnn CSL                                                                 (5.57) 

where nn nTC  , 1T is the execution time on a serial machine and nT
 
is the computing 

time on parallel machine with N processors. We can observe from the figures in section 

6 that high speedups for the algorithms are obtained from larger problems. This is due to 

the relatively high communication time for passing data between the master and slaves; 
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wasteful idle time at a barrier synchronization point before proceeding with the next 

iteration. Hence, effectiveness is given as 

  1)( TSETEnTSL nnnnnnn                                                     (5.58) 

which clearly shows that nL is a measure of both speedup and efficiency. Therefore, a 

parallel algorithm is said to be effective if it maximizes nL and hence nnn ESTL 1 .  

 

5.7 General Parallel Implementation of the Schemes 

 

Implementation of the algorithms is straight forward as follows: 

- Division of spatial computational domain to desired number of sub-domains, 

based on load balancing constraint. 

- Indication of sweeping direction for each sub-domain. Sweeping direction of 

each sub-domain must be in opposite direction of its neighbors. For example we 

use LR(left to right) direction for odd sub-domains and RL (right to left) 

direction for even sub-domains. This sweeping direction is inverted after each 

time step. 

- Updating start node of each sub-domain and remained nodes. If the start node is 

located at physical boundaries, the prescribed boundary values is used. 

 The first aspect of parallelizing a finite difference method by domain decomposition is 

to divide the grid into parts. This is how the full computational task is divided among 

the various processors of the parallel machine. Each processor works only on its specific 

portion of the grid and anytime a processor needs information from another processor a 

message is passed. For the best parallel performance, one would like to have optimal 

load balancing and as little communication between processors as possible.  

Consider load balancing first. Ideally, one would like each processor to do exactly the 

same amount of work (suppose we have same processors). That way, each processor is 
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always working and not sitting idle. For a finite difference code, the basic 

computational element usually is the node. It makes sense to partition the grid such that 

each processor gets an equal (or nearly equal) number of nodes to work on.  

 The second criterion is that the amount of communication between processors be 

made as small as possible. To minimize communication, the program must divide the 

domain in a way that minimizes the length of the touching faces in the different sub-

domains. The number of processors that once given has to communicate with also 

contributes to additional communication time. This is because each time a processor 

wants to communicate with a new processor, a latency penalty for starting the new 

message is incurred. This leads to the full statement of the second criterion for a good 

grid partitioning. Consideration of system latency in domain decomposition procedure 

is not a simple task because it is severely a function of network specifications and needs 

some experiments with network. In this thesis work we neglect this effect for simplicity 

of domain decomposition (DD). 

 Therefore the DD procedure is converted to a simple constrained minimization 

problem that its cost function is the total length of interfaces between sub-domains and 

its constraint is equal to the number of sub-domains nodes. Therefore at first step we 

divide the spatial computational domain to 21 PPP   sub-domains without any 

overlapping and define two-dimensional Cartesian topology with 21 PPP   

processors. As an example Fig. 5.5 shows a partition square domain with 321  PP . 

After DD, we need to indicate sweeping directions in x  and y directions for each sub-

domain. Sweeping directions of each sub-domain must be in opposite directions of its 

neighbors. For example if ),( yx PP  are the coordinates of each processor in defined 

Cartesian topology, we use LR direction for odd value of xP and RL direction for even 

value of xP  and in the same manner, we use DT (down to top) direction for odd value of 
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yP  and TD (top to down) direction for even value of yP . These sweeping directions are 

inverted after each time step. Fig. 5.6 shows schematically this procedure for 

321  PP .  

 The next stage is updating starting nodes of each sub-domain with their 

respective equations. We need two nodal values of neighbor sub-domain; we add two 

additional columns (or rows) of grids to local mesh of each processor at its interfaces 

with other processors (see Fig. 5.7). Therefore before performing the differential step in 

x  direction each processor communicate with its left and right neighbors and attains the 

new values of its left and right additional columns. In the same manner before 

performing differential step y direction each processor has communication with it‟s 

down and up neighbors. Consider the differential step in x  direction and suppose the 

sweeping direction is LR. At start of updating procedure the processor use the equation 

in the thpthn )1(or)1(   time level therefore it needs previous values of its two 

additional columns that are related to its left neighbor processor. This needs one 

communication stage with its left neighbor processor. When calculation proceeds to 

right boundary for updating last column of nodes the previous values of one column of 

right neighbor processor is also needed. This needs also one communication stage that 

must be completed before updating last column. For achieving better performance we 

use the overlapping communication for hiding network latency in this communication 

stage. For example, we use the non-blocking message passing for this communication 

stage.  
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Fig. 5.5. Schematic of 3 x 3 array of processors in two-dimension Cartesian topology. 

 

 

 

 

 

 

 

 

Fig. 5.6. Schematic of sweeping directions of 3 x 3 array of processors two time steps 

 

 

    

 

 

 

 

 

Fig. 5.7 Schematic of 3x3 array processors with local grid and additional columns 
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5.8 Other Parallel Implementation of the Algorithms 

 

At each time-step we have to evaluate 1nu  values at 'lm' grid points, where 'l' is the 

number of grid points along x-axis and m is the number of grid points along the y-axis. 

Suppose we are implementing this method on SR mesh connected computer. Denote 

the processors by 

                           MSandS,,,jl,RandR,,,:iP ,ji   21121111 .  

The processors ,Pi1j1 are connected as shown in Fig. 5.8. Let 









R
L

1
1

and 









S

M
M1

 

where    is the smallest integer part. Divide the ''lm grid points into ''RS groups so that 

each group contains at most ))(M(L 11 11  grid points and at least 11ML  grid points. 

Denote these groups by  

                                             ,S,,j,R,,,:iG ji  21121111  .  
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Fig. 5.8 Connected processors 

 

                                      1131211 Rjjjj PPPP    

Fig. 5.9 Row-wise processor communication 

Design ,G ji 11 such that it contains the following grid points 
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Assign the group ,G ji 11 to the processor .2121 1111 S,,,jFor,R,,,,:iP ,ji   Each 

processor computes its assigned group 
1n

i,ju values in the required number of sweeps. At 

the th)/(p 21 sweep the processors compute 
)th/(p

i,ju 21
 values of its assigned groups. For 

the th)/(p 21 level the processor 11 jiP  requires one value from the processor 

111111 or jiji PP   processor. In the th)/(p 21 level the communication between the 

processors is done row-wise as shown in Fig. 5.9. After communication between the 

processors is completed then each processor ijP  computes the 
21/p

i,ju 
values. 

 For the th)(p 1  sweep each processor 11 jiP  requires one value from the 

111111 or jiji PP   processor. Here the communication between processors is done column-

wise as shown in Fig. 5.10. Then each processor computes the values 
)th(p

i,ju 1
of its 

assigned group. 
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Fig. 5.10 Column-wise processor communication 
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The algorithm can be transformed to master-slave model by sending out the computing 

tasks on each block to each processor in the Cluster system. The master task reads in the 

input data file, generates the grid data, initializes the variables and sends all the data and 

parameters to the slaves. It then sends a block 1-D to each slave process which in turn 

computes the coefficients of the relevant equations and solves for the solution of this 

block. This solution is then sent back to the master task and this processor wait for the 

next task. The master task receives the solution results from the slaves sequentially in an 

asynchronous manner, rearranges the data, calculates the global residuals of each 

equation and determines if convergence has been reached. If the convergence has not 

been reached, the current solution vector is sent to all slaves and a new iteration is 

started. Therefore, all the variables stored in the local memory of slaves are updated at 

every iteration. If the convergence has not been reached, the current solution vector is 

sent to all slaves, and a new iteration is started. Therefore, all the variables stored in the 

local memory of slaves are updated.  

 

5.9 Parallel Domain Decomposition Algorithms 

  

The domain partition for the parallel algorithm described in this section is based on the 

availability of processors, i.e. if there are qp  processors available, then the discrete 

domain is divided qp sub-domains and each sub-domain ji, is of equal size as 

shown in Fig. 5.11. The values of qp and  are chosen to be close to each other.  
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Fig. 5.11 The domain divided into qp sub-domains 

Before more discussion of the parallel algorithm, description on the allocation of data 

associated with the sampling points on the sub-domains, interface boundaries and the 

boundary intersection points to the processors is discussed first. 

 We illustrate the data distribution (to different processors) using Fig. (5.12), 

which displays the sub-domain ji,  with its interface boundaries and some of its 

neighboring sub-domains. The four interface boundaries of the sub-domain are 

identified by 4321 and,,, bbbb  (see Fig. (5.12), 4321 and,,, bbbb are part of the set of all 

interface boundary points excluding the intersection points of the interface boundaries 

).,,,( 21 nB    The four points of the sub-domain are identified by 

,and,, 4321 ipipipip and the sub-domain ji, are part of ,cB  where cB is the sampling 

points excluding the interface boundaries but including the intersection points. With this 

notations explained, the data distribution for the parallel implementation is the 

following: 
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5.10 Data Allocation in the Algorithms 

 

Assign the sub-domain ji, to processor .,,2,1and,2,1for, qjpiP ji    Assign 

the interface boundaries 43 ,bb and the intersection point .processorto ,3 jiPip  

According to the above allocation scheme, the rest of the interface boundaries and 

intersection points in Fig. (5.12) (i.e. )and,,, 42121 ipipipbb are assigned to the 

processors processing neighboring sub-domains, that is, the interface boundary 1b  and 

the intersection point 4ip  is assigned to processor .,1 jiP  The intersection point 1ip is 

assigned to processor .1,1  jiP  The interface boundary 2b and the intersection point 2ip

are assigned to processor .1, jiP
 

 

                                                                  4b  

                                                        4ip                         3ip  

                           ji ,1                                 ji,                          3b  

                                             1b            1ip                     2ip  

                                                               2b  

                              1,1  ji                              1,  ji  

                             

 

Fig. (5.12) The assignment of boundaries and intersection points of a sub-domain to 

processors 

 

With the data allocation scheme given, our various iterative schemes for computing the 

solution at th)1( k time-step from the current thk )( time-step is the following: 
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1) Compute the solution 2/1ku on the interface boundary (i.e. on B ). Then send the 

computed solution 2/1ku on interface boundaries to its neighbor (as shown in Fig. 

(4.6)) as follows. 

a) For processor jiP , as shown in Fig. (5.8), if a right-neighbor is present (i.e. 

processor ),,1 jiP then processor jiP , sends the interior vertical interface 

boundary 3b (refer to Fig. 5.8)) to the processor .,1 jiP  A total of 1n  

elements are sent to the right neighbor (i.e. processor jiP , ).  

b) If processor jiP , has a left neighbor (i.e. processor ),,1 jiP  jiP , receives the 

predicted interior vertical interface boundary 1b  from processor .,1 jiP  A 

total of 1n elements are received by processor jiP , .  

c) If processor jiP , has an upper-neighbor (i.e. processor ),1, jiP  the jiP , sends 

the interior horizontal interface boundary 4b to processor 1, jiP (i.e. its 

upper-neighbor). A total of 1m data elements are sent to the upper-

neighbor (i.e. processor 1, jiP ).  

d)  If processor jiP , has a down-neighbor (i.e. processor 1, jiP ), then jiP ,

receives the interior horizontal boundary 2b from processor .1, jiP  A total of 

1m data elements are received by processor jiP , . 

e) If upper-neighbor (i.e. processor ),1, jiP is present to processor jiP , , 

i) If processor jiP ,  also has a left neighbor (i.e. processor ),,1 jiP jiP ,

sends the solution at the sampling point neighboring 4ip to processor 

.,1 jiP  Here a total of 1 data is sent to the left-neighbor (i.e. 

processor ).,1 jiP    
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ii) If right-neighbor (i.e. processor ),1 jiP is also present to processor

jiP , , then jiP , receives the solution at the sampling point neighboring 

intersection point 3ip from processor .,1 jiP  Here 1 element is 

received by jiP , .  

f) If right-neighbor (i.e. processor ),1 jiP is present 

i) If processor jiP ,  also has a lower- neighbor (i.e. processor ),1, jiP

jiP , sends the computed solution at the sampling point neighboring 

2ip to processor .1, jiP  The amount of data sent to processor 1, jiP  is 

1.  

ii) If processor jiP , also has an upper-neighbor (i.e. processor ),1, jiP  

jiP , receives the computed solution at sampling point neighboring 3ip  

from processor .1, jiP  The amount of data received by processor jiP ,

is 1. 

The data computed in step1 provide the solution at time-step 
2

1
k at the 

interface boundary conditions. 
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Fig. 5.13: Inter-processor communication patterns and amount of transferred data of 

step 1, assuming each processor is assigned a sub-domain of grid size ,
q

N

p

M
 where 

q

N
nand

p

M
m   

2) Compute solution 2/1ku on ,cB i.e. the sampling points within the domain and the 

boundary intersections. The computation of this step can be solved mutually 

independently on the sub-domains and thus in parallel. No communication is necessary 

in this step. 
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3) Compute solution .on1 ck Bu   Then part of the computed solution is transferred for 

the computation of .on1 Bu k  The data communicated in this step is the following 

(shown in Fig. 4.7)). 

a) Considering processor jiP ,  assigned sub-domain ,, ji  if jiP , has an upper-

neighbor (i.e. processor )1, jiP and a right-neighbor (i.e. processor ),,1 jiP then 

jiP ,  sends the computed solution of the interface boundary intersection point 

3ip to .and ,11, jiji PP   

b) If processor jiP , has an upper-neighbor 1, jiP  and also a left-neighbor ,,1 jiP  

then jiP , receives the computed value at 4ip  from .,1 jiP  

c) If processor jiP , has a right-neighbor jiP ,1 and also a down-neighbor ,1, jiP  

processor jiP , receives the computed solution at 2ip  from .1, jiP   

d) If processor jiP , has a down-neighbor ,1, jiP jiP , sends the solution at 

sampling points neighboring 2b  to .1, jiP  A total of )1( m data elements are 

sent by jiP , , where m is the number of grid-points in the sub-domain along x-

axis. 

e) If processor jiP , has an upper-neighbor ,1, jiP jiP , receives the solution 

computed for the sampling points neighboring 4b from processor .1, jiP  Here 

1m  data are received by processor jiP , .  

f) If processor jiP , has a left-neighbor (i.e. processor ),,1 jiP  jiP ,  sends the 

solution computed at the sampling points neighboring 1b  to processor .,1 jiP  

Here, )1( n  elements are transferred by processor jiP ,  to processor ,,1 jiP  

where n  is the number of grid-points in the sub-domain along y-axis.  
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g) If processor jiP ,  has a right-neighbor (i.e. processor ),,1 jiP jiP ,  receives the 

computed solution of the sampling points neighboring 3b  from processor .,1 jiP  
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Fig. 5.14: Inter-processor communication patterns and amounts of transferred data of 

step 3.  Assuming each processor is assigned a sub-domain of grid size ,
q

N

p

M
 where 

q

N
nand

p

M
m   

4) Compute the solution 1ku  on the interface boundaries B with the solution 1ku  on 

nearby sub-domains which it received in previous step (step 3) as boundary conditions. 

This step does not involve any communication with neighboring sub-domains. It 

involves the following: 
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a) If processor jiP ,  has a right-neighbor (i.e. processor ),,1 jiP  

compute 1ku  on interface boundary 3b . 

b) If processor jiP ,  has an upper-neighbor (i.e. processor ),1, jiP  

compute 1ku  on interface boundary 4b .  

 

5.11 Parallel Implementation of the 3-D Algorithm 

 

The realistic simulation of complex 3D structures may require a large number of grid 

nodes and can quickly push the limits of a single processor computer in terms of 

memory needs and processor speed. To achieve acceptable computation times, our finite 

difference scheme has been design to run on parallel computers using MPI and PVM. 

Thus, our parallel approach is optimized for distributed memory architecture.  

 Given the number of mesh nodes in each dimension and the number of available 

processors, we divide the mesh into 3D subsets representing the different processor 

domains. It is important that the mesh subsets are as equal in size as possible. 

Otherwise, long idle times result from an unbalanced load and thus deteriorate the 

parallel performance. For simplicity, suppose that each processor is assigned to only one 

grid node in a 3D mesh. The time-stepping scheme requires message passing across 

processor boundaries, which alternates with the fields updating steps. The fields which 

are needed in order to complete the field update at a given node ),,( kji , yet are 

calculated by an adjacent processor, are called “ghost” values.  

 One must ensure that an effective parallel implementation of the algorithm leads 

to a substantial increase in the computational count per data exchange, major reduction 

in synchronization frequency and subsequent decrease in communication sessions. 

Here, we involve the assignment of block of grids to each task to a surface so that each 

task only communicates with its limited nearest neighbors. Only the top, bottom, left 
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and right surfaces of the block need to be exchanged between neighbouring tasks. As an 

example, Fig. 5.1 illustrates the pattern of communication with 4 tasks )4( p . It is 

important to maintain load balancing in the distribution of m grids to tasks 

.,,, 21 pPPP   The data decomposition of the 3-D ADI algorithm is implemented and 

run simultaneously at every time level, where each task is allocated pm / grids. It 

proceeds for every task at each time level until the approximate solutions are computed 

at the last time level. These tasks then send the approximate solutions to the master, 

which in turn processes the global solutions.  

 On the MPI and PVM parallel implementation of the 3-D ADI is based on one 

master and many tasks. The master program is responsible in constructing the m grids 

sizes, computing the initial values, partitioning the grid into blocks of surface, assigning 

these blocks to the p task modules, distributing the task to different processors and 

receiving approximate solutions from the tasks. Each block that is assigned to a task 

module is composed of pm / blocks. 

 A task process starts computations after it receives a work assignment. A task 

module )( Pqq  performs the 3-D ADI iterations on the grid points of the assigned 

block which is composed of surfaces with indices between  

                               ,1)(and
)1(

)( 



p

m
endSUR

p

qm
startSUR qq  

where SUR refers to the surface. The task q will transmit  

i. to its upper neighbor )(),1( startSURqtask q  and receive from it 

                  )(1)( 1 endSURstartSUR qq   

ii. to its lower neighbor )(),1( endSURqtask q  and receive from it 

                  ).(1)( 1 startSURendSUR qq   
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Since multiple copies of the same task code run simultaneously, the tasks will exchange 

data with their neighbors at different times. At this point, the barrier function is called 

by the MPI and PVM library routine for synchronization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15. Communication of data exchange between 4 tasks 
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