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CHAPTER 7 

DISCUSSIONS 

 

7.1 Introduction 

 

This chapter presents discussions of the sequential and parallel experiments in figures 

and Tables as shown in chapter 6. Comparison of sequential and parallel results of 

various schemes on 1-D Parabolic and Bio-Heat Equations, 2-D Parabolic and Bio-Heat 

Equations and 1-D, 2-D,3-D sequential and parallel results are given.    

 

7.2 Comparison of various schemes on 1-D Parabolic and Bio-Heat Equations         

(Sequential Results) 

 

Table 6.1 shows comparative results for the 1-D Parabolic Equation given by (Saulev 

(1964)) using the stationary and classes of alternating direction explicit schemes for 

410,25.0,5.0  epst . The number of iterations, the average absolute error (abs), 

and the RMS in sequential algorithms are shown. The sequential solutions to the 

Parabolic Equation for the same problem obtained by means of the various different 

schemes at the same time levels are presented. The results demonstrate that for the 

experiment, the fourth-order IADE and fourth-order AGE are the most accurate in 

comparison to other schemes as well as second-order IADE methods. Hence, the fourth-

order AGE scheme is more accurate in comparison in Table 6.1.  

 The Table also shows that the fourth-order AGE scheme achieves a low iteration 

count by using a convergence requirement of 410 . This indicates that the algorithm 

is a fast numerical solver. The fourth-order IADE scheme is also seen to have low 

iteration count than the classes of IADE schemes employing the Mitchell & Fair-
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weather variant is fourth-order accurate in space and second-order accurate in time 

whereas the IADE-MF and IADE-DY variants are second-order accurate in both space 

and time. As for the IADE variant, its truncation error is  )()( 2 txO  . The GS 

accuracy is the least among all the methods under consideration. 

   The Crank-Nicolson type approximation gives better accuracy than the implicit 

method, thus producing a more accurate solution as compared to the IADE-DY (IMP). 

However, a drawback in using the former is that it incurs more work than the latter in 

the derivation of its formulae. In conclusion, the fourth-order AGE scheme has merits as 

an alternative method with respect to stability, accuracy and rate of convergence. Its 

computational properties are well-suited for implementation on parallel computers.  

 Table 6.2 shows comparative results for the 1-D Bio-Heat Equation using the 

stationary and classes of alternating direction explicit schemes for 

410,25.0,5.0  epst . The average absolute errors of the various stationary and 

iterative methods are shown. The sequential solutions of the 1-D Bio-Heat Equation for 

the same problem obtained by means of the various different schemes at the same time 

levels are presented. The results demonstrate that for the experiment, the fourth-order 

AGE is the most accurate in comparison to other schemes.  

 

7.3 Parallel Results for 1-D Parabolic and Bio-Heat Equations 

   

In Table 6.3, MPI and PVM parallel results on 1-D Parabolic Equation for various 

algorithms for 300 mesh sizes are presented. In the Table, we also listed the elapsed 

time for the master task, Tw, the master CPU time, Tm, and the slave data communication 

time, Tsd, speedup and efficiency all in seconds for the PVM and recorded speedup and 

efficiency for MPI. In Table 6.3, it is observed that as the processors increases Tw 

deceases and Tm remains constant. We can also observe that as we scale up the 
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processing units the speedup and efficiency get better. The data listed in the Table 6.3 

gives values of the speedup and efficiency both for PVM and MPI for the number of 

processors used in the computation for 300 mesh size. 

 The total execution time increases due to the communication cost and additional 

cost for computing the solution on interface boundaries of each time-step. From the 

results, it is shown that the processors involved in the computation of solution spend 

most of their time on computations. The data in Table 6.3 shows that as the number of 

processors increases the parallel efficiency decreases and the speedup increases for all 

the schemes. The decrease in efficiency is due to the communication cost and additional 

computation cost with the increase in the number of processors. The low computation 

cost and the low computation overhead of the algorithms are reasons for high speedup 

and efficiency.  

 The speedup with increasing processors for the GS and SOR schemes on PVM 

and MPI platform for 100 and 300 mesh sizes is plotted in Fig. 6.1 for 1-D Parabolic 

case and Fig. 6.2 shows the speedup of GS and SOR for 100 and 300 mesh sizes with 

MPI and PVM for 1-D Bio-Heat. In Fig. 6.1, we observed that the implementation with 

MPI gives more linearity conformity than the schemes with the PVM implementation 

and the SOR performs better in comparative. Fig. 6.2 gives a little improvement on Fig. 

6.1 in terms of linearity conformity. We have in Fig. 6.3 the GS and SOR efficiency of 

100 and 300 mesh sizes with PVM and MPI for the 1-D Parabolic case and Fig. 6.4 

gives the GS and SOR efficiency of 100 and 300 mesh sizes with PVM and MPI for the 

Bio-Heat case. Fig. 6.4 shows a slight improvement over Fig. 6.3 considering the SOR 

class, particularly the MPI implementation. Similarly, the speedup of 100 and 300 mesh 

sizes for 1-D Parabolic case of IADE-DY and IADE-MF PVM and MPI is shown in 

Fig. 6.5. Fig. 6.6 shows the speedup of IADE-DY and IADE-MF for 100 and 300 mesh 
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sizes for PVM and MPI in the 1-D Bio-Heat case. We observe that as the mesh size 

increases the linearity of the speedup improves.  

 Efficiency for 1-D Bio-Heat of 100 and 300 mesh sizes for PVM and MPI is 

shown in Fig. 6.7. In the figure we observe that as the meshes increases, the efficiency 

of the schemes get better. However, the IADE-MF class of method is more efficient 

compared to IADE-DY and SOR. Similarly, the implementation on MPI platform 

shows better conformity. The speedup for the IADE-4
th

 order scheme and the AGE-4
th

 

order scheme for 100 and 300 mesh sizes for 1-D Parabolic and 1-D Bio-Heat are 

shown in Fig. 6.8 and Fig. 6.9 respectively. In these figures, we observed that the AGE-

4
th

 order scheme has better linearity property in comparison to the IADE-4
th

 order 

scheme especially for the MPI implementation. Moreover, their efficiencies are shown 

in Fig. 6.10 and Fig. 6.11. In the figures for the efficiencies, we observed that the AGE 

class of method for Parabolic and Bio-Heat show closeness to unity than every other 

scheme considered in the experiment. In conclusion, the linearity of the speedups in Fig. 

6.9 and Fig. 6.8 are more visible than Fig. 6.6, 6.5, 6.2 and 6.1. In Fig. 6.10 and Fig. 

6.11, the efficiencies are closer to unity than Fig. 6.7, 6.4 and 6.3. From the figures and 

Tables, the parallel algorithm maintains good stability by having a low maximal error 

confirming the mathematical theory given in (Dou & Phien-Thien (1997)).  

 

7.4 Comparison of the various Schemes on 2-D Parabolic and Bio-Heat                                 

 Equation (Sequential Experiments) 

 

Comparative results for Eq. (6.7) and (6.8) using various schemes, showing the average 

of all absolute errors, root mean square errors (RMS), iteration number, 

410and,,,   ttx are given in Table 6.7 for the Parabolic case. Similarly, 

comparative sequential results for Eq. (6.9) and (6.10) with the various schemes, 
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showing the average of all absolute errors, RMS, iteration number, 

410and,,,   ttx are given in Table 6.8 for the Bio-Heat case. The results 

demonstrate that for the experiment, the AGE class is the most accurate in comparison. 

The Table also shows that the AGE scheme achieves a low iteration count by using a 

convergence requirement of 410 . This indicates that the algorithm is a fast 

numerical solver for both Parabolic and Bio-Heat Equations. The MF-DS scheme is also 

seen to have low iteration count than the classes of IADE schemes. As for the IADE 

variant, its truncation error is  )()( 2 txO  . The GS accuracy is the least among all 

the methods under consideration. In conclusion, the AGE scheme has merits as an 

alternative method with respect to stability, accuracy and rate of convergence. Its 

computational properties are well-suited for implementation on parallel computers.  

 

7.5 Parallel Results for 2-D Parabolic and Bio-Heat Equations 

 

In Table 6.9, the MPI and PVM results for 2-D Parabolic Equation for 300x300 mesh 

sizes for various algorithms are presented. In the Table, we also listed the elapsed time 

for the master task, Tw, the master CPU time, Tm, and the slave data communication 

time, Tsd, speedup and efficiency all in seconds for the PVM and recorded speedup and 

efficiency for MPI. Compared to Table 6.3, here, we observe an increase in speedup and 

efficiency. This means, as the mesh sizes increases the speedup and efficiency get better 

as observed. Also, the Tw increases as the mesh sizes increases and Tm remains constant 

for their increased values. The AGE class of scheme show better speedup both for PVM 

and MPI than other schemes. Fig. 6.12 shows the speedup for GS and SOR PVM 

implementation for 100x100 to 300x300 mesh sizes for 2-D Parabolic and Fig. 6.13 

shows the speedup for IADE-DY, MF-DS and the AGE PVM implementation for 

100x100 to 300x300 mesh sizes for 2-D Bio-Heat. We observed that the speedup in Fig. 
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6.13 shows better linearity property, especially the AGE class of method for higer mesh 

sizes. This shows that as the mesh increases, the speedup improves. Fig. 6.14 shows the 

speedup for the MPI implementation using IADE-DY, MF-DS and the AGE for the 

various meshes. The speedup for the various stipulated meshes for IADE-DY, MF-DS 

and AGE is shown in Fig. 6.15 for the 2-D Bio-Heat. In this figure, we observed 

improved linearity conformity for the AGE class of method in comparative.  

The results in Fig. 6.16 and Fig. 6.17 show the efficiency of various mesh sizes 

with PVM and MPI for IADE-DY, MF-DS and AGE method respectively, for 2-D 

Parabolic. We observed that the MPI implementation is closer to unity. Fig. 6.18 and 

Fig. 6.19 show the efficiency of various mesh sizes with PVM and MPI for the 2-D Bio-

Heat showing the IADE-DY, MF-DS and AGE schemes. We observed from these 

figures that the MPI efficiency is closer to unity than the PVM efficiency for both 

differential equations under consideration. That is, the AGE class scheme MPI 

implementation is more conformed to unity and more accurate than other class of 

schemes under consideration. However, the parallel efficiency decreases with the 

increasing block number for given grid size. Given other parameters the speedup 

increases with the number of processors (Fig. 6.2 – 6.15). At a large number of 

processors, Amdahl‟s law starts to operate, imposing a limiting speed-up due to the 

constant serial time. Note that the elapsed time is a strong function of the background 

activities of the cluster. When the number of processors is small, the wall time decreases 

with the number of processors. As the number of processors become large, however, the 

wall time increases with the number of processors.  

 

 

 

 



201 
 

7.6  Comparison of the various Schemes on 1-D Telegraph Equation  

 Sequential Experiments 

 

Table 6.21 provides a comparison of the accuracy of the methods under consideration in 

terms of absolute error and RMS for the problem given in Eq. (6.11) and (6.12) at the 

appropriate grid points for the mesh ratio 5.0  at time levels of

.10,105,10,25.0 134   xtepst  The result of the three level implicit 

schemes is compared to the results of IADE-MF. The results in Table 6.21 demonstrate 

that the IADE-MF method has comparable accuracy. In reference to (Evan & Hassan 

(2003)), more reasons for the performance of the alternating class method has been 

given. It is evident that the three level implicit scheme is less accurate than the IADE-

MF scheme. The iteration number necessary for convergence for IADE-MF is lesser.  

 

7.7 Comparison of the various Schemes on 1-D Telegraph Equation  

 Parallel Experiments 

 

Table 6.22 shows the results for the implicit and IADE schemes with PVM and MPI 

speedup and efficiency. In the Table, we also listed the elapsed time for the master task, 

Tw, the master CPU time, Tm, and the slave data communication time, Tsd, speedup and 

efficiency all in seconds for the PVM and recorded speedup and efficiency for MPI. 

From the Table, we observe that as the number of processors increases, the execution 

time decreases. This shows that as the number of processors increases, though it might 

lead to a decrease in execution time but will get to a point that increasing the processors 

will not have much impact on total execution time. Comparing the performances of the 

two schemes from the Table, we observe that the IADE-MF scheme gives better 
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parallelism and scalability than the three level implicit scheme. Hence, performance can 

be improved when the processors are sufficiently large.  

Fig. 6.24 shows the PVM speedup for 1-D Telegraph using the IMP and IADE 

scheme for various mesh sizes and Fig. 6.25 shows the respective MPI implementation 

for various mesh sizes. We observe that, as the mesh sizes increases the linearity 

becomes visible. The IADE-MPI (300 mesh) in Fig. 6.25 shows slight linearity over the 

IADE-PVM (300 mesh) in Fig. 6.24. However, the parallel results in Table 6.22 show 

that the IADE-MF has a slight increase speedup and efficiency than the IMP scheme.  

The efficiency is shown in Fig. 6.26 for 1-D Telegraph PVM implementation using IMP 

and IADE schemes and Fig. 6.27 shows the efficiency for MPI implementation using 

the IMP and IADE scheme on 1-D Telegraph. Similarly, as the various mesh sizes 

increase, the efficiency of higher mesh sizes are near unity than the lower mesh sizes. 

The time spend in data exchange will be significant compared to the time spend in 

computation and the parallel efficiency goes down. Hence, when the number of 

processors increases, balancing the number of computational cells per processors will 

become a difficult task due to significant load imbalance. Hence, increasing mesh sizes 

improves parallelization in a distributed system due to utilizing processors 

effectiveness. We observed that the efficiency of the three meshes decreases with 

increasing processors and the efficiency for the higher mesh sizes are better than the 

smaller mesh size. Hence, by inference the larger the mesh sizes up to certain number, 

the speedup improvement is near linearity. The performance begins to degrade with an 

effect caused by increase in communication overhead as the mesh sizes increases. 

 The problem size is scaled up following the memory-bounded constraint. This 

phenomenon is well under expected since the implicit replacement has a very low 

computation overhead as implemented on problems. The computation time increases 

very slowly as the number of processors increases. However, these jumps in 
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communication time which are relatively larger than the others are mainly caused by the 

architecture of the communication between the processors, that is, due to the underlying 

machine architecture not the algorithm.  

 

7.8 Comparison of various Schemes on 2-D Telegraph Equation 

 Sequential Experiments 

 

Fig. 6.28 and Fig. 6.29 provide a comparison of the accuracy of the methods for Eq. 

(6.13 and 6.14) at the appropriate grid points for the mesh ratio at time levels of

0.25.1,0.1,5.0  tandttt . The average of the absolute errors can be seen in 

Fig. 6.28 and the root mean square errors in Fig. 6.29 (from Table 6.25 – 6.26) of the 

methods under consideration for the sequential algorithms. The results of the ADI and 

IADE-DY methods are compared to the results of MF-DS. The results in these figures 

demonstrate that the MF-DS method is more accurate compared to the ADI method of 

(Peaceman & Rachford (1955)). Similar reasons show that MF-DS is more accurate 

than the ADI in (Mitchell & Fairweather, (1964) and Sahimi et al., (2006). We used 

410and,5.0,5.0,5.0,05.0,5.0   ryxt  in Fig. 6.28 and Fig. 6.29. 

 The results in Fig. 6.28 also show that the IADE-DY scheme is unconditionally 

stable and seems to be more accurate than the ADI scheme as well. However, the MS-

DS and IADE-DY are accurate than the ADI. Based on (Sahimi et. al. (2006)), the DS-

MF is convergent, computationally stable and highly accurate. The figures have been 

able to show this.   
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7.9 Comparison of various Schemes on 2-D Telegraph Equation 

 Parallel Experiments 

 

In Table 6.27, the MPI and PVM results on 2-D Telegraph Equation for 300 x 300 mesh 

size for various algorithms are presented. In the Table, we also listed the elapsed time 

for the master task, Tw, the master CPU time, Tm, and the slave data communication 

time, Tsd, speedup and efficiency all in seconds for the PVM and recorded speedup and 

efficiency for MPI. Compared to Table 6.22, here, we observe an increase in speedup 

and efficiency. The MF-DS class of scheme is more linear in speedup than other 

schemes. Fig. 6.30 shows various speedups for ADI, IADE and MF-DS schemes with 

PVM implementation for 100x100 to 300x300 mesh sizes for 2-D Telegraph and Fig. 

6.31 shows the various speedups for ADI, IADE and MF-DS with MPI implementation 

for 100x100 to 300x300 mesh sizes for 2-D Telegraph. From the figures we observed 

that as the mesh sizes increase, the linearity get visible. However, the MF-DS-MPI 

(300x300 mesh) speedup values in Table 6.9 shows slight improvement over the MF-

DS-PVM (300X300 mesh) speedup. Hence, the MF-DS scheme performs better in 

comparison to the IADE scheme. Fig. 6.32 shows efficiency of various mesh sizes with 

PVM for 2-D Telegraph and Fig. 6.33 shows the efficiency for various meshes with 

MPI for 2-D Telegraph. From the two figures, we observed that as the mesh sizes 

increase, the efficiency gets closer to unity as visibly observed for the MF-DS scheme. 

The linearity property and closeness to unity in the figures are most observed for the 

MF-DS MPI.   

 When a single processor is used to calculate a large problem, the local memory 

of the processor is insufficient to store all the data and a large part of the data has to be 

distributed to remove memory by the distributed memory system. Therefore, the serial 

computation seems to be relatively less efficient or slower than its parallel counterparts. 
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These results show that the parallel efficiency increases with increasing mesh sizes. 

Comparing the performances of the different schemes, Table 6.27 and Fig. 6.30 to Fig. 

6.33, we observed that the MF-DS has slight improvement over IADE-DY and better 

improvement over the ADI scheme with MPI and PVM. Hence, the MF-DS is an 

improvement on the IADE-DY and can improve performance when the CPUs are 

sufficiently large. From Fig. 6.30 and Fig. 6.31, as the mesh sizes increases, the speedup 

approaching linearity becomes visible. MPI is focused on message passing and 

explicitly states that resource management and the concept of a virtual machine are 

outside the scope of the MPI standard (Foster et al., (1998) & Groop et al., (1999)). 

Hence, MPI is a much richer communication method than PVM. PVM provides only 

simple message passing. Similarly, as the mesh sizes increases, the efficiency gets 

closer to unity. The implementation with MPI in terms of the algorithm performance 

and convergence shows improvement as compared to the implementation with PVM in 

relation to the results obtained in the tables and figures. The MPI is expected to run 

faster within a large multiprocessor. It has many more point-point and collective 

communication options than PVM. Here, the MPI has the ability to specify a logical 

communication topology. The improved performance of the MPI is due to the concepts 

of context and a group of processes into a communicator and is suitable for non-

blocking send used in our experiments.  

 Hence, we see that the parallel efficiency is strongly dependent on the problem 

size and the number of processors. Generally, it increases with the increasing problem 

size. The magnitude of the parallel efficiency can be estimated. However, the domain 

decomposition greatly influences the performance of the parallel computation. For a 

given mesh size, there is an optimum number of sub-domains which maximizes the 

domain decomposition efficiency. This optimum number of sub-domains increases with 

the mesh size. However, the speedup increases with the number of processors, both for 
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MPI and PVM. Their relative performance show that MPI perform slightly better than 

PVM. We also observed that as the mesh sizes increases, the execution time increases as 

well with a proportionate decrease in time giving the efficiency in Fig. 6.32 for PVM 

and Fig. 6.33 for MPI as the processors increases. The time spend in data exchange will 

be significant compared to the time spend in computation and the parallel efficiency 

goes down. We observed that, the efficiency of the three meshes decreases with 

increasing processors and the efficiency for the higher mesh sizes are better than the 

smaller mesh sizes. 

 

 7.10 Discussions of 3-D ADI Scheme on 3-D Telegraph Equation  

 Sequential Experiment 

 

From Eq. (5.1) using the 3-D ADI scheme from Eq. (5.14) – Eq. (5.16), the values of 

the root mean square errors ( Table 6.38) against different levels of t is plotted in Fig. 

6.38 for 0.2and0.1,0.2,0.1  tttt and 64/132/1,16/1 andh  . Similarly, the 

values of the RMS errors (Table 6.39) for the 3-D ADI is given in Fig. 6.39 for 2.3

0.2and0.1,0.2,0.1  tttt  and 64/132/1,16/1 andh  . The results only confirm 

the unconditional stability which has been proven (see Mohanty, (2009)). This indicates 

that the algorithm is a numerical solver for the Telegraph Equation. In conclusion, the  

3-D ADI scheme has merits as an alternative method with respect to stability, accuracy 

and rate of convergence. Its computational properties are well-suited for implementation 

on parallel computers.  
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7.11 Discussions of 3-D ADI Scheme on 3-D Telegraph Equation  

 Parallel Experiments 

 

In Table 6.40, the MPI and PVM results on 3-D Telegraph Equation for 300 x 300x300 

mesh size using the 3-D ADI scheme are presented. In the Table, we also listed the 

elapsed time for the master task, Tw, the master CPU time, Tm, and the slave data 

communication time, Tsd, speedup and efficiency all in seconds for the PVM and 

recorded speedup and efficiency for MPI. Comparing Table 6.27 for the 2-D Telegraph 

Equation to Table 6.40 of the 3-D Telegraph Equation, here, we observe an increase in 

speedup and efficiency. Fig. 6.40 shows the speedup for 3-D ADI 300x300x300 mesh 

sizes with PVM and MPI and Fig. 6.41 shows the efficiency of 300x300x300 mesh 

sizes with PVM and MPI. The linearity property and closeness to unity in the figures are 

most observed for the 3-D ADI MPI implementation.   

 

7.12 Performance Improvement Comparison of Schemes 

 

Since iterative methods are usually needed in high resolution simulations, we examine 

the performance of the schemes used in Chapters 3, 4 and 5 for solving the large sparse 

linear systems arising from discretized 1-D, 2-D and 3-D Parabolic and Telegraphic 

equations. In Tables 6.5, 6.6, 6.11 and 6.12, we give the performance improvement for 

the stationary iterative methods and iterating alternating methods. Table 6.4 shows the 

effectiveness of various schemes with PVM and MPI for 300 mesh size on 1-D 

Parabolic case. From the Table, it is observed that as the number of processor increases 

the efficiency gets better in respect to convergence, and the effectiveness for the MPI 

implementation is slightly better. In the same table, the AGE-4
th

 scheme class of 

methods give better effectiveness than other schemes both for MPI and PVM.  
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 The improvement given in Tables 6.5 for 1-D Parabolic 300 mesh size, 6.11 for 

2-D Parabolic, 6.24 for 1-D Telegraph and 6.29 2-d Telegraph case for various schemes 

are implemented by using schemelowerschemehigh TT /1 , where schemehighT  and schemelowT  are the 

times required for the various schemes. In the Tables, schemehighT  equals varying schemes 

for the alternating iterating schemes and schemelowT  represents the stationary iterating 

schemes, respectively. The algorithm in the Tables 6.6 to 6.29 shows significant 

improvement in many CPUs. However, when implemented in a small number of CPUs, 

the improvement is not so evident since the communication cost only a small portion of 

the total wall time. As the number of CPU increases, the bottleneck neck of parallel 

computers appears and the global reduction consumes a large part of time; we anticipate 

that the improvement will move to be significant. In Table 6.6, we observed that as the 

number of processor increases the time for each schemes decreases and the performance 

comparison shown for various schemes show comparative improvement, respectively. 

In Table 6.11 and 6.12, we observed that the performance comparison of the AGE class 

of methods give better performance compared to other class of iterative methods. Table 

6.24 shows performance for two schemes on 1-D Telegraph equation, and it is observed 

that the implementation with MPI shows slight improvement than PVM. In Table 6.29, 

it is observed also that as the number of processor increases the performance 

improvements get slightly better due to convergence criterion. Hence, MF-DS class of 

methods yield better convergence.  

 Table 6.10 shows effectiveness for various schemes with PVM and MPI for 300 

x 300 mesh size parabolic case, and the same improvement was observed for different 

schemes both for PVM and MPI. Here, the AGE class of method as above is more 

effective as it combines the element of numerical stability. Table 6.23 gives the 

effectiveness of various schemes with PVM and MPI for 300 mesh size on 1-D 

Telegraph equation, and the IADE-MF class is more effective than the IMP method for 
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both MPI and PVM. Effectiveness of various schemes on 2-D Telegraph 300 x 300 

mesh size both for PVM and MPI is shown in Table 6.28, with the MF-DS class being 

more effective. The values in the Tables indicate that the stationary iterative methods 

are not very scalable with respect to the problem size for solving discretized higher 

Parabolic and Telegraphic equations. However, the SOR method with optimum 

relaxation parameter is a significant improvement over the GS method. The average 

number of the iterative alternating iterations increases faster than that of the stationary 

iterations, indicating that, for a very large size problem, the iterating iteration performs 

better than stationary methods.   

 

7.13 Parallel Efficiency of Schemes 

 

To obtain a high efficiency, the slave computational time scT  should be 

significantly larger than the serial time. When the number of processors is small, the 

wall time decreases with the number of processors. When the number of processors 

becomes large, however, the wall time increases with the number of processors. The 

total CPU time is composed of the waste time, slave data time and slave computational 

time. Data communication at the end of every iteration is necessary in this strategy. 

Indeed, the updated values of the solution variables on the full domain are multicast to 

all slaves after each iteration since a slave can be assigned a different sub-domain under 

the pool-of-task paradigm. For a given grid size, the CPU time for task id to slaves 

increases with block numbers (Tables 6.13, 6.14, 6.30 and 6.31). 
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7.14 Numerical Efficiency of the Schemes 

 

The numerical efficiency numE  includes the DD efficiency DDE  and convergence rate 

behavior 1/ NNo , as defined in Eq. 5.68. The DD efficiency )1(/)1(1

No

BB

No

BDD TTE 

includes the increase of floating point operations induced by grid overlap at interfaces 

and the CPU time variation generated by DD techniques.  

 Tables 6.13, 6.14, 6.30 and 6.31 shows the CPU time for the slave computation 

for different grid sizes which is the parallelizable part, running with one processor with 

varying sub-domain numbers and grid sizes. Due to the repeat computation at the 

interfaces, the number of operations actually changes with block sizes as seen from the 

Tables (6.13, 6.14, 6.30 and 6.31). It is interesting to note that there is an optimum 

block number which minimizes the slave CPU time for computation. This is due to two 

reasons:  

1. The doubling of the calculations at the interfaces of the sub-domains, which 

increases with block number; and  

2. A CPU time reduction owing to a small ratio of memory access to memory 

occupation for a large block number. 

The convergence rate behavior 1/ NNo , the ratio of the iteration number for the best 

sequential CPU time on one processor and the iteration number for the parallel CPU 

time on n processor, describe the increase in the number of iterations required by the 

parallel method to achieve a specified accuracy, as compared to the serial method. This 

increase is caused mainly by the deterioration in the rate of convergence with increasing 

number of processors and sub-domains. Because the best serial time is not known 

generally, we take the existing parallel program running on one processor to replace it. 

Now the problem is that how decomposition strategy affects the convergence rate? The 

results are summarized in Tables 6.15, 6.16, 6.17, 6.18, 6.19 and 6.20 for parabolic case 
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and Tables 6.32, 6.33, 6.34, 6.35 and 6.36 for both PVM and MPI. Their figures are 

shown in Fig. 6.21, 6.23, 6.34, 6.35, 6.36 and 6.37 for both PVM and MPI. 

 It can be seen that 1/ NNo  decreases with increasing block number and 

increasing number of processors for a given size. The larger the grid size is, the higher 

is the convergence rate. For a given block number, a higher convergence rate is obtained 

with less processors. This is because one processor may be responsible for a few sub-

domains at each iteration. If some of these sub-domains share some common interfaces, 

the subsequent blocks to be computed will use the new updated boundary values, and 

therefore, an improved convergence rate results. The convergence rate is reduced when 

the block number is large. The reason for this is evident: the boundary conditions 

propagate to the interior domain in the serial computation after one iteration. But this is 

delayed in the parallel computation. In addition, the values of variables at the interfaces 

used in the current iteration are the previous values obtained in the last iteration. 

Therefore, the parallel algorithm is less “implicit” than the serial one. Despite of these 

inherent short comings, a high efficiency is obtained for large scale problems. Many 

improvements have been made and a more detailed analysis has been given. This has 

led to a more systematic analysis of the results presented in Chapter 6.    

 

 

    

 

 

 

 

 

 


