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CHAPTER 4 

CIRCULAR REGRESSION MODEL 

 

4.1 Introduction 

 

 Regression analysis is a statistical technique for investigating and modelling the 

relationship between variables. Applications of regression are numerous and occur in 

almost every field, including engineering, physical sciences, economics, management, 

life and biological sciences and social sciences. In fact, regression analysis may be the 

most widely used statistical technique which includes investigating, forecasting and 

modelling the relationship between variables. There are several types of regression 

models that have been used widely such as linear regression, logistic regression, 

multivariate regression, and circular regression models for various purposes. In order to 

use any of the models, we have to statisfy every single assumption that has been 

specified. Linear regression is the simplest form of regression models which make 

several assumptions, including the measurement errors need to be normally distributed. 

The regression models can be extended to the case of circular variables.  

The study of regression models for circular variable started four decades ago. 

Gould (1969) proposed a regression model to predict a circular response variable   

from a set of linear covariates, where   has a von Mises distribution with mean µ and 

concentration parameter  ,  ,VM . The proposed model is given by 

 
k
j jj x10    (4.1) 

where 0 and j  are unknown parameters, and jx  is a linear covariate, kj ,...,2,1 . 

Assuming that n ,...,, 21  is a set of circular independent and identical observations of 



43 

 

von Mises distributions with mean directions n ,...,, 21  respectively and unknown 

concentration parameter  , Mardia (1972) extended model (4.1) to 

ii t  0    (4.2) 

for some known numbers nttt ,...,, 21  and unknown 0  and  . Jammalamadaka and 

Sarma (1993) proposed a regression model for two circular random variables u  and v  

in term of the conditional expectation of the vector 
ive given by 

)()()()|( 21
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iiv

uigugeuueE 
    (4.3) 

where )( iu  is the conditional mean direction of iv  given iu  with conditional 

concentration 1)(0  iu . Due to the difficulty of estimating )(1 iug  and )(2 iug  

from the data, Jammalamadaka and Sarma (1993) expressed them in terms of their 

Fourier series expansions. 

Hussin et al. (2004) extended model (4.2) for the case when both response and 

explanatory variables are circular. For any circular observation 

),(),...,,(),,( 2211 nn vuvuvu  of circular variables u  and v  with a linear relationship 

between them, they proposed a model 

iii uv   )2(mod      (4.4) 

where i  is circular random errors following a von Mises distribution with mean 

circular 0 and concentration parameter  . They imposed a restriction on the model 

parameters, so that   is an integer and close to one. In this study, the focus will be a 

circular regression model by Down and Mardia (2002) which will be described in the 

following section. Herewith, we refer to this model as the DM circular regression 

model. 
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4.2 Down and Mardia (DM)  Circular RegressionModel 

 

   Down and Mardia (2002) proposed the DM circular regression model which 

maintains a one-to-one correspondence between the independent angle and the mean 

of the dependent angle. Assume that v  is the dependent random angle and u  is the 

fixed independent angle. The parameter   and   are the angular location parameters 

while   is a slope parameter in the closed interval [-1, 1]. They proposed the DM 

model given as 

     uv
2

1
tan

2

1
tan .    (4.5) 

The locus of the points  vu,  is a continuous closed curve winding once around a 

toroidal surface. Eq. (4.5) has a unique solution given by 

 

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
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

   uv
2

1
tantan2 1 .    (4.6) 

Eq. (4.6) defines a one to one relationship between u  and v  where 0 . Fisher and 

Lee (1992) suggested the link function x1tan2   for linear-circular regression, 

since it maps the linear variable x  to   , . Suppose that u  is the fixed independent 

angle, v  the dependent angle and v  in Eq. (4.6) replaced by  , the mean direction for 

v  given u . The resulting link function, or regression curve, is given by 

     u
2

1
tan

2

1
tan     (4.7) 

which has unique a solution 

 








   u
2

1
tantan2 1

.    (4.8) 

Down and Mardia (2002) classified the regression models into three categories which 

are class A, class B and class C. In the class A model, the regression model has three 
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functionally independent parameters  ,   and  . For the class B model,  and   

have a relationship such as 0  , or can be written as   ,, . In the class C 

model, the slope parameter,  can take one of the special values of  1,0,1  such as 

0  . The loglikelihood function for a random sample of n pairs  jj vu ,  from a 

Class A or B model is given by 
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Differentiating Eq. 4.9 with respect to   gives  
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where   1A  as defined in Section 2.4.4. Recall that for class B models,   . 

For both classes, the maximum likelihood estimator ̂  of the precision parameter   

is defined explicitly by 

     
j jj uvv

n
 ;cos

1
,,ˆ .     (4.10) 

 Class B and C are special cases of Class A; with the parameters of   and   

are related for the earlier case, while   is restricted to take specific values only. 

Consequently, the estimation of parameters are expected to be simpler for this special 

cases. 

 

4.3 The Maximum Likelihood Estimation (MLE) of Parameters in DM Model 

 

From the previous section, the loglikelihood function for a random sample of n pairs 

from a Class A or B model is given by Eq. (4.9). In order to maximize the likelihood 

function, we employ iterative approach which require the determination of initial 
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values 0 , 0  and 0 . These initial values are obtained by calculating the precision 

parameter   in Eq. (4.10) for all posible pairs of  ,   and  in a pre-specified sets. 

In our case, we consider the following pre-specified sets of parameter values, 

  , ,   , and  1,1 . Thus, we consider a set of initial values; 

 000 ,,   correspond to value which maximize the precision parameter  . Using 

these initial values, we obtain the MLE estimates for the three parameters using Eq. 

(4.9). This can be done by using the MS function available in S-Plus software. 

 

4.4 Covariance Matrix of Circular Regression Model 

 

Down and Mardia (2002) provided the information matrix for DM sircular 

regression model using the loglikelihood function with known parameters   ,,,  

     ,coslog 0 iivInconstl   

where 
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

   ii u
2

1
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Using the fact that 

     AvE ii cos ,     0sin  iivE  , 

the Fisher information matrix  ijII  for   ,,,T
θ   4321 ,,,  . Given 

that, 0342414  III  so that 1̂ , 2̂  and 3̂  are independent of 4̂  as expected, 

asymptotically. 
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where  0,0,0T
0 , 11C  is 3 x 3 and 22C  is a scalar. Then,  '4422 nAI C , 

   32111 ,,  BC A  where the elements of the matrix   ,,B  are 

nb 11 ,  


 ib12 ,  


 ib13  

 222 
 ib ,    
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 iib 23 ,  233 

 ib , 
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Thus 

        11
ˆ,ˆ,ˆˆˆˆ,ˆ,ˆcov


  BA , 

      0ˆ,ˆcovˆ,ˆcovˆ,ˆcov   . 

We will consider the covariance matrix in Chapter 5 to identify influential observation 

in bivariate circular data. 

 

4.5 Practical Example  

 

Here we consider real data sets to show the estimation of the DM circular 

regression model using MLE method; the ocean wind direction data and the circadian 

biological rhythm data. 

4.5.1 Ocean wind direction data 

In this section, we introduce briefly the HF (High frequency) radar system and 

the anchored wave buoy (AB) techniques for measuring the ocean wind direction 

followed by a description of the data. 
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1. The HF radar System 

 HF radar is an on-line mapping tool of surface current fields and the spatial 

distribution of the wave directional spectrum. The HF radar was developed by UK 

Rutherford and Appleton Laboratories and subsequently by Marex Ltd and The Marconi 

Radar Company. The system uses pulse radar with high radio frequency (24.4-27 MHz) 

to map surface current patterns over a large area of ocean. 

2. The Anchored wave buoy 

The anchored wave buoy is often used as the standard tool in evaluating new wind 

or wave measuring systems. Older models measure the vertical motion of wind and 

wave at a single point. Typical wave buoy also additionally measure the lope of the sea 

surface in two directions at the same points.  We consider data collected along the 

Holderness coastline (the Humberside coast of the North Sea, United Kingdom) by 

using an HF radar system and an anchored wave buoy. The deployment began in 

October 1994. The following information is assumed: 

i. There is temporal stationary over the period of measurements 

ii. There is spatial stationary over the area of measurement 

iii. The different techniques are measured independently 

The wind direction is the direction of the local wind which blows across the sea 

surface and along the coast where the HF radar system and anchored wave buoy are 

deployed. The full data set is obtained from Hussin (1997) and is given in Appendix 5. 

There were a total of 129 measurements recorded by both instruments. 

 

Descriptive Statistics 

Several plots can be used to show the distributions of both measurements. In 

general, from Figures 4.1 and 4.2, both sets of measurement follow the same 

distribution. It can be seen that there is a high frequency in the second quadrant for both 
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Figure 4.1: Circular Histogram for HF     Figure 4.2: Circular Histogram for AB 

 

 

 

 

 

 

 

 

Figure 4.3: Q-Q plot for HF and AB 

 

sets of measurements. From Figure 4.3, there are two points located at the top of the Q-

Q plot. These points might correspond to observations which are candidates to be 

outliers. Some of the descriptive statistics for the ocean wind direction data are given in 

Table 4.1. The summary statistics of the HF radar and anchored wave buoy are almost 

similar including the concentration parameter with the value less than one.  
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Table 4.1: Descriptive statistics for the ocean wind direction data 

Variable HF  v  AB  u  

Observations 129 129 

Mean Direction 350.43° 351.06° 

Mean Resultant Length 0.41 0.44 

Circular Variance 0.59 0.56 

Circular Std Dev 76.374° 73° 

Median Direction 334.72° 327.33° 

Circular Dispersion 28.3 25.74 

Concentration parameter 0.902 0.99 

 

 

Parameter Estimation  

 

Using the data set, we calculate the precision parameters in the pre-specified sets as 

described in Section 4.3. The resulting plot of   versus index representing different 

points of   ,,  is given in Figure 4.4. The initial values of each parameter 

correspond to the highest point observed in the plot giving   126o ,  126o  

and 9.0o .  Thus, using these initial values, the final estimated parameter values are 

obtained by maximizing the log likelihood function given by equation (4.9); 

 39.65̂ ,  82.71̂  and 91.0ˆ  . Figure 4.5 gives the P-P plot of the residuals 

from the resulting DM circular regression model. It can be seen that the points are all 

close to the straight line. Further, the value of the goodness-of-fit measure,  ̂*A , as 

described in Section 2.5 is 90.0 . These suggest that the model fits the data well. 

 

 

 

 

 

 

 

 

 

 

 

           Figure 4.4:  Plot of  versus index for ocean wind direction data 
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Figure 4.5: P-P plot of the residuals 

4.5.2  Circadian data 

We consider the circadian data provided by Downs and Mardia (2002). The data 

were obtained from 10 medical students in Austria.  The students are measured for 

about 20 variables several times daily for a period of few weeks.  The study period was 

split into two prime time periods as part of the study, and the peak time for systolic 

blood pressure (in degree) was estimated separately for each student for each period, 

giving values S1 and S2.  These data are given in Appendix 6, in degrees, with 15 

degrees equal to one hour. The two blood pressure peak times should be equivalent, if 

circumstances are the same for each of the two periods. 

 

Descriptive Statistics 

Several plots are used to study the distribution of S1 and S2. In general, the 

maximum blood pressures are observed in the upper left quadrant of the circular 

histogram indicating the same time in both periods as can be seen in Figures 4.6-4.7. 

From Figure 4.8, the Q-Q plot for testing the von Mises distribution shows that the 

quantiles are close to the straight line.  There is a point observed at the bottom left of the 

plot and well separated from the others though lies on a straight line.  
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Figure 4.6: Circular Histogram for S1         Figure 4.7: Circular Histogram for S2 

 

 

 

 

 

 

 

Figure 4.8: Q-Q plot for S1 and S2 

 

The descriptive statistics for the circadian data are given in Table 4.2. Summary 

statistics of the peak time for systolic blood pressure (in degree) give almost similar 

values for S1 and S2. 

Table 4.2: Descriptive statistics for the circadian data 

Variable S1  u  S2  v  

Observations 10 10 

Mean direction 307.93 314.69 

Mean resultant length 0.74 0.72 

Circular variance 0.26 0.28 

Circular std dev 44.87 46.6 

Median direction 314.5 318 

Circular dispersion 28.3 25.74 

Concentration parameter 2.251 2.125 
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Figure 4.9:  Plot of  versus index for circadian data 

 

 The concentration parameter for both periods are close and greater than 2, 

suggesting that the observations are concentrated in the directions of 307.93 and 

314.69 for S1 and S2 respectively.   

 

 

Parameter Estimation  

 

 

Using the data set, we calculate the precision parameters in the pre-specified sets 

first and obtain the plot of  versus index as given in Figure 4.9.  The initial values of 

each parameter correspond to the highest point observed in the plot giving  18o , 

 9o  and 70.0o . Thus, using these initial values, the final estimated parameter 

values are obtained by maximizing the log likelihood function from Eq. (4.9) giving 

 58.16̂ ,  74.5̂  and 67.0ˆ  . Figure 4.10 gives the P-P plot of the residuals 

from the resulting DM circular regression model. It can be seen that the points are 

reasonably close to the straight line. Further, the value of the goodness-of-fit measure, 

 ̂*A , is 945.0 . These suggest that the model fits the data well. 
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Figure 4.10: P-P plot of the residuals 

 

4.6 Summary  

 

In this chapter, we have described the DM circular regression model and its properties. 

We used the maximum likelihood estimation (MLE) method to estimate all the 

parameters in the model. The procedures to find the parameter estimation have been 

discussed in Section 4.3. Finally, we have illustrated the application of the model to the 

real data set as described in Section 4.5.  We will utilize these estimates in our search of 

outliers and influential observations in the next two chapters. 

 

 

 

 

 

 

 


