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CHAPTER FIVE 

OUTLIERS IN DM CIRCULAR  

REGRESSION MODELS 

 

5.1 Introduction  

 

Outliers may give a significant impact on estimating the parameters of DM 

circular regression models especially with the classical estimation methods such as least 

squares (LS) method and maximum likelihood estimation (MLE) method. In this 

chapter, we investigate the robustness of MLE method for DM circular regression 

models in the presence of outliers. Outliers which affect the parameter estimates of 

interest are usually called influential observations. In this chapter, we use a row deletion 

approach in identifying such influential observations by investigating its effect on the 

covariance matrix of the parameters of the DM circular regression models. 

 

5.2 Robustness of Maximum Likelihood Estimation Method 

 

In this section, we intend to study the effect of outliers on the MLE estimate of 

the DM models as given in Eq. 4.5. Let u  be a circular independent variable with values 

generated from  5031  n,,VM   and e  be a circular random error with values 

generated from  50,20,0  nVM  . To test the robustness of MLE in this 

model, we introduce an outlier in the original dependent variable at the i th observation, 

 iv , giving  iv*
  such that 

     iviv*
,          10   ,     5021 ,...,,i  . 

We calculate the estimated parameters with and without outliers using the maximum 

likelihood estimation method. We carry out the simulation 3000 times. The difference 
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of the estimated parameters and the true values for   and   are measured by the 

circular distance as given by Jammalamadaka and SenGupta (2001).  That is, the 

circular distance between the estimated circular parameter  MLEMLEMLE  ˆ,ˆˆ   and 

 truetruetrue  ,  is defined as 

  trueMLEd   ˆ  

which is also known as circular bias. Further, the difference between the estimate 

parameter and the true value for   is measured by linear bias, 

  trueMLE
ˆBias   . 

The estimation of the parameter that exclude the outlier is when the value of 

contaminated point 0 .  The results for three cases are tabulated in Tables 5.1-5.3.  

In all cases, as the value of contamination point   increases, the bias for the three 

parameters get larger except when   get closer to 1.  This is because the contaminated 

point will be further away from one tail of the data but closer to the other tail. We 

conclude that the presence of outliers in circular data does affect the estimation of the 

parameters of DM circular regression models. 

 

Table 5.1: Estimate of parameters and Biasness (True value α =0.5, β =0.5, ω =0.2) 

λ ̂   

Circular bias, 

 d  ̂  

Circular bias,  

 d  ̂  

Bias, 

 Bias  

0 0.6550 0.1550 0.5821 0.0821 0.1737 0.0263 

0.1 0.6272 0.1272 0.6621 0.1621 0.1790 0.0210 

0.2 0.6854 0.1854 0.7409 0.2409 0.1718 0.0282 

0.3 0.7416 0.2416 0.8353 0.3353 0.1815 0.0185 

0.4 0.7951 0.2951 0.9297 0.4297 0.1699 0.0301 

0.5 0.9215 0.4215 1.0130 0.5130 0.1800 0.0200 

0.6 0.9711 0.4711 1.0204 0.5204 0.1705 0.0295 

0.7 0.9900 0.4900 1.0106 0.5106 0.1499 0.0501 

0.8 1.0302 0.5302 0.9266 0.4266 0.1489 0.0511 

0.9 0.9844 0.4844 0.8312 0.3312 0.1627 0.0373 

1 0.9825 0.4825 0.8004 0.3004 0.1688 0.0312 
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Table 5.2: Estimate of parameters and Biasness (True value α =2.5, β =2.5, ω =0.5) 

λ ̂   

Circular bias, 

 d  ̂  

Circular bias,  

 d  ̂  

Bias, 

 Bias  

0 2.0246 0.4754 2.0495 0.4505 0.4884 0.3116 

0.1 1.9311 0.5689 2.0768 0.4232 0.4837 0.3163 

0.2 1.8957 0.6043 2.0432 0.4568 0.4504 0.3496 

0.3 1.8427 0.6573 1.9987 0.5013 0.3942 0.4058 

0.4 1.7074 0.7926 1.9220 0.5780 0.3593 0.4407 

0.5 1.6241 0.8759 1.9120 0.5880 0.3474 0.4526 

0.6 1.6970 0.8030 1.8915 0.6085 0.3314 0.4686 

0.7 1.7541 0.7459 1.8121 0.6879 0.3065 0.4935 

0.8 1.7987 0.7013 1.8823 0.6177 0.3574 0.4426 

0.9 1.5669 0.9331 1.9526 0.5474 0.3869 0.4131 

1 1.6852 0.8148 1.9396 0.5604 0.3856 0.4144 

 

 

 

Table 5.3: Estimate of parameters and Biasness (True value α =1.5, β =1.5, ω =0.4) 

λ ̂   

Circular bias, 

 d  ̂  

Circular bias,  

 d  ̂  

Bias, 

 Bias  

0 1.5737 0.0029 1.4452 0.1255 0.4534 0.0466 

0.1 1.5972 0.0264 1.4675 0.1033 0.4501 0.0499 

0.2 1.6097 0.0389 1.4535 0.1172 0.4438 0.0561 

0.3 1.6157 0.0449 1.4644 0.1063 0.4503 0.0496 

0.4 1.6127 0.0419 1.4551 0.1156 0.4445 0.0554 

0.5 1.6141 0.0433 1.4493 0.1214 0.4476 0.0523 

0.6 1.6309 0.0601 1.4595 0.1112 0.4435 0.0564 

0.7 1.6317 0.0609 1.4527 0.1180 0.4375 0.0624 

0.8 1.6400 0.0692 1.4896 0.0811 0.4380 0.0619 

0.9 1.6238 0.0530 1.4566 0.1142 0.4447 0.0553 

1 1.6093 0.0385 1.4474 0.1233 0.4514 0.0486 
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5.3 Graphical Techniques 

 

 Graphical techniques not only can be used for describing the circular data but 

also for diagnostic checking purposes in circular regression models.  As an example, 

Figures 5.1-5.3 gives the circular histogram, index plot and Q-Q plot of the circular 

residuals obtained from a DM circular regression model given a simulated data set.  

Clearly, from these plots, most of the circular residuals are concentrated around 0, 

except two points which are further away from the rest.  Disregarding these two points 

from the Q-Q plot of a von Mises distribution, we can say that the residuals follow a 

VM distribution, which is an  assumption made for the DM regression models. In 

addition, Abuzaid et al. (2010) proposed a circular boxplot which is an analogue of 

linear boxplot.  The plot can be used to see the way the circular data are distributed 

around a unit circle and, more importantly, to identify possible outliers that might occur 

in the data.  From Figure 5.4, we can see that most points lie around zero but there are 

two points which lie outside the lower/upper inner fences of the circular boxplot.  Such 

points are identified as outliers. Meanwhile, Fakhrul et al. (2008) proposed a new plot 

called “Spoke plot” which is very useful to demonstrate the relationship between two 

circular variables.   The plot constitute 2 circles referred as the inner and outer circles as 

shown in Figure 5.5.  The values of an independent variable u are placed in the inner 

circle while the values of a dependent variable v in the outer circle.  The blue lines 

connect the corresponding values of u and v.   If lesser number of the blue lines are 

observed crossing the interior of the inner circle, then we expect there exist strong 

relationship between the two variables.  At the same time, the plot can be used to 

recognice outliers in the data.  It can be seen  in the plot that a pair of (u, v) is not close 

to the other pairs and becomes a candidate to be outlier.  The plot will also suggest that 

the relationships between the variables are quite strong with value closer to 1. 
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Figure 5.1: Scatter plot                       Figure 5.2: Circular residuals versus index 

 

 

 

 

 

 

 

 

Figure 5.3: Q-Q plot for circular residuals   Figure 5.4: Circular boxplot 

 

 

 

 

 

 

 

Figure 5.5: A sample of Spoke plot for variables u and v 
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5.4 COVRATIO Statistic 

 

The row deletion approach has been widely used for linear regression models in 

identifying outliers which affect the parameter of interest such as parameter estimates, 

variance of residuals and also covariance matrix.  These outliers are usually called 

influential observations.  Here, we consider a statistic that has been used to identify 

influential observation in linear regression models, the COVRATIO statistic.  The 

statistic employs the row deletion approach by looking at the effect of influential 

observations on the covariance matrix of the linear regression model.  Belsley et al. 

(1980), in his paper, suggested the COVRATIO statistic based on the determinantial 

ratio of the covariance matrix given by 

 
 

COV

COV i
COVRATIO i


  

where COV  is the determinant of the covariance matrix as given in Section 4.4 for the 

full data set and  COV i  is for the reduced data set by excluding the ith row.  If the 

ratio is close to  unity, then there is no significant difference between the covariance 

matrices, that is, the ith observation is consistent with the other observations.  It has 

been shown further that, if the value of   1COVRATIO i  is larger than (3p/n), then 

the ith observation is a candidate for influential observation, where p is the number of 

estimated coefficients and n is the sample size.  In this study, we extend the use of this 

statistic to identify the presence of influential observation in the DM circular regression 

model.  We will find the cut-off points of the statistic and investigate its performance 

via simulation in the following sections. The procedure will detect only a single 

influential observation at a time. The procedure can be repeated until no influential 

observation is identified. 
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5.5 Sampling Behaviour of the COVRATIO Statistic 

 

We generate various sets of circular random error from the von Mises 

distribution with mean direction  =0 and the concentration parameter  =5, 10, 30 and 

50.  Then, we generate the values of the independent circular variable u  from 

)3,2/(VM  for a given sample size n. Using the above information, the observed 

values of the response variable v  are then calculated using the DM circular regression 

model as given by Eq. (4.6) with fixed values of   =1.5,  =1.5, and 50. .   

Upon fitting the DM regression model on the simulated data, we obtain the 

fitted values v̂ . Then, we compute the value of  iCOVRATIO   for all ni ,...,2,1  and 

consequently obtain the maximum value of   1COVRATIO i . The process is carried 

out 500 times for each combination of sample size and concentration parameter.  We 

then calculated the 1%, 5% and 10% upper percentiles of the maximum values of 

  1COVRATIO i  which will be considered as the cut-points of the 

  1COVRATIO i  statistic. 

The cut-off points are tabulated in Table 5.4.  In general, for all  and percentile 

levels considered, the cut-off points get smaller as n gets larger.  On the other hand, 

there is no consistent pattern of the cut-off points observed as  increases, though they 

achieve their maximum when  = 3 to 5.  

Note that the cut-off points described above are only for the case when 5.0 . 

Further investigation shows that the cut-off points do not depend on the parameter 

values   and  , but depend on  . When   gets closer to 1, the cut-off points get  
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Table 5.4: Cut-off point of COVRATIO statistic 

n Level of 

percentile 

        

2 3 4 5 7 10 20 30 

30 1% 2.59 1.51 1.66 1.01 1.09 1.06 1.03 1.01 

 5% 1.11 0.79 0.89 0.74 0.76 0.72 0.79 0.67 

 10% 0.83 0.71 0.73 0.67 0.66 0.66 0.69 0.62 

40 1% 0.75 0.69 0.72 0.71 0.67 0.66 0.62 0.72 

 5% 0.53 0.58 0.60 0.56 0.55 0.54 0.50 0.55 

 10% 0.47 0.52 0.51 0.48 0.50 0.49 0.45 0.48 

50 1% 0.57 0.53 0.61 0.64 0.54 0.56 0.64 0.57 

 5% 0.41 0.46 0.50 0.50 0.45 0.48 0.48 0.46 

 10% 0.38 0.43 0.44 0.44 0.39 0.42 0.44 0.42 

60 1% 0.48 0.48 0.47 0.48 0.51 0.49 0.52 0.50 

 5% 0.43 0.42 0.42 0.43 0.41 0.42 0.43 0.42 

 10% 0.36 0.37 0.37 0.37 0.35 0.37 0.39 0.35 

70 1% 0.31 0.41 0.46 0.48 0.47 0.46 0.43 0.46 

 5% 0.29 0.36 0.37 0.37 0.37 0.36 0.36 0.37 

 10% 0.28 0.34 0.34 0.33 0.33 0.33 0.32 0.33 

80 1% 0.28 0.36 0.42 0.45 0.45 0.44 0.41 0.43 

 5% 0.26 0.31 0.36 0.37 0.38 0.36 0.34 0.34 

 10% 0.25 0.29 0.32 0.32 0.31 0.31 0.32 0.31 

90 1% 0.26 0.32 0.37 0.39 0.38 0.36 0.38 0.42 

 5% 0.23 0.28 0.31 0.34 0.29 0.32 0.31 0.29 

 10% 0.22 0.26 0.28 0.29 0.25 0.26 0.29 0.26 

100 1% 0.22 0.30 0.34 0.35 0.32 0.33 0.34 0.41 

 5% 0.21 0.27 0.28 0.29 0.28 0.29 0.28 0.27 

 10% 0.20 0.25 0.26 0.26 0.24 0.25 0.25 0.23 

120 1% 0.19 0.24 0.31 0.32 0.34 0.28 0.29 0.26 

 5% 0.18 0.23 0.26 0.25 0.24 0.23 0.24 0.23 

 10% 0.17 0.22 0.23 0.23 0.21 0.21 0.22 0.21 

140 1% 0.15 0.22 0.25 0.27 0.25 0.26 0.24 0.28 

 5% 0.14 0.20 0.24 0.21 0.21 0.21 0.20 0.21 

 10% 0.14 0.19 0.22 0.20 0.19 0.18 0.18 0.19 

150 1% 0.15 0.21 0.24 0.28 0.26 0.24 0.28 0.24 

 5% 0.14 0.19 0.21 0.22 0.21 0.21 0.22 0.20 

 10% 0.14 0.17 0.19 0.18 0.19 0.19 0.18 0.18 
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smaller. Partial results are given in Appendix 7. However, when   gets closer to 0, the 

  1COVRATIO i  statistic fails to give reasonable set of cut-off points. 

5.6 Power of Performance of COVRATIO Statistic 

 

To investigate the power of performance of   1COVRATIO i  statistic, several 

sample sizes are considered.  We generate the data using similar steps employed in the 

previous section. In addition, at point ][d  of the response variable v , the observation 

][dv  is contaminated as follows 

  2mod][][*  dvdv  

where ]d[v*   is the contaminated observation at position ][d  and    is the degree of 

contamination in the range 10   .  The generated data are fitted using Eq. (4.1) and 

we obtain the fitted values v̂ . Then, we calculate the maximum value of 

  1COVRATIO i  statistic for each simulated data set. The power of performance is 

examined by computing the percentage of correct detection of the contaminated 

observation at position ][dv . We provide the result for 5.1 ,  =1.5, and 50. .  

Figure 5.6 gives the plot of power of performance of   1COVRATIO i  

statistic for   n = 70 and various value of  κ. It can be seen that the power is an 

increasing function of the concentration parameter  κ. For large values of concentration 

parameter κ = 20 and 30, the statistic is able to detect an outlier at lower contamination 

levels. Whereas, for the smallest value of concentration parameter κ = 5, the statistic is 

only able to detect an outlier which is really far from the rest of the observation. 
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Figure 5.6: Power of performance of   1iCOVRATIO  statistic, for n=70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Power of performance of   1iCOVRATIO  statistic, for  =10 
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On the other hand, Figure 5.7 gives the plot of power of performance of 

  1COVRATIO i  for  =10 and various value of n. It can be seen that the power 

curves are very close to each other for n = 50, 100 and 150 while the power curve is 

lower for n = 30. Similar results are observed for the other cases.  

 

5.7 Practical Example 

 

As an illustration, we use the data set as described in Section 4.5.1. Figure 5.8 

gives the spoke plot of the data.  By taking the horizontal axis in the right direction as 

0 , the inner ring places the observations of anchored wave buoy AB while the outer 

ring for high frequency radar HF.  The lines connecting points on outer and inner rings 

correspond to the observed values of AB and HF respectively for the same 

individual/item.  There are only two lines crossing the inner ring.  Further, by using the 

  1COVRATIO i  statistics we identify that observations number 38 and 111 are 

candidates for influential observations. This can be further verified by looking at Figure 

5.9 whereby there are two observations with high value of   1COVRATIO i  denoted 

by p. 

 

 

 

 

 

 

 

 

 

Figure 5.8:  Spoke plot of wind data 
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Here, we have 129n  and 84.6 . By considering the value of cut-off point 

corresponding to 100n  and 7 , Table 5.5 gives the test value p and the decision 

for each observation. 

Table 5.5: Result based on COVRATIO statistic 

Iteration Observation Test value Cut-off point   Decision 

1 38 0.95 0.28 Outlier 

2 111 0.68 0.28 Outlier 

 

Based on the results, in the first iteration, we identify observations 38n  as influential 

observation because the test values exceed the cut-off point of the statistic which is 

0.28.  In the second iteration, we identify 111n  as influential observation. The plots p 

versus index are given in Figures 5.9-5.10 repectively. Further, we investigate the effect 

of these two observations on the parameter estimates.  After removing observations 38 

from the data set, we noticed that ̂  and ̂  decrease by a large value which is 

  33.81̂ ,  38.42̂  and 0.94ˆ   as shown in Table 5.6. However, not much 

change is observed when observation 111 is removed. Hence, it is important to 

investigate the observations identified as influential observations in both measurements 

of ocean wind direction, and the information might be useful for further investigation. 

 

 

 

 

 

 

 

Figure 5.9: Plot of p versus index for st1  iteration 
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Figure 5.10: Plot of p versus index for nd2  iteration 

 

Table 5.6:  Effect of influential observation on parameter estimates 

Data        ̂  ̂  ̂  

Full data set 65.39 71.82 0.91 

Without the 111
th

 observation  65.68 71.84 0.91 

Without the 38
th

 observation 33.81 38.42 0.94 

Without both observations 31.20 35.57 0.94 

 

 

5.8 Summary 

 

In this study, we have considered the problem of detecting influential observations in 

the DM circular regression model. We then extend the use of the   1COVRATIO i  

statistic to the model of interest.  The cut-off points and the performance of the 

procedure are obtained via simulation. Finally, as an illustration, the 

  1COVRATIO i  statistic for circular bivariate data has successfully detected 

observations number 8 and 111 as outliers in the ocean wind direction data set.  
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