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 CHAPTER SIX 

RESIDUAL ANALYSIS FOR OUTLIER DETECTION IN DM 

CIRCULAR REGRESSION MODELS 

 

6.1 Introduction 

 

A standard approach employed in the study of outlying observations in linear 

and nonlinear regression models is by performing residual analysis.  This approach is 

applicable for the case of circular regression models.  However, a different type of 

residuals from the linear case is required due to the bounded property of the circular 

variables. We consider the most recent definition of circular residuals found in the 

literature which utilize the formula of circular distance between circular residuals.  Our 

focus is to identify outliers which affect the residuals of the DM circular regression 

model by employing a row deletion method.  As in the last chapter, these outliers are 

usually called influential observations.  

 

6.2 Circular residuals 

 

It is important to study the residuals resulting from any regression modeling in 

order to check the model adequacy.  In the case of linear regression, errors are assumed 

to be random, independent, identically and normally distributed with mean zero and 

constant variance. The standard definition of residuals for a linear regression model 

given by iii yye ˆ , where iy  and iŷ  are observed and predicted values respectively, 

cannot be used for circular regression models. For instance, let  345iy  and  5ˆiy . 

Then  3405345ie  which is a total contrast to the actual circular residual, 20 . 
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Few definitions of circular residuals can be found in the literature.  Mardia 

(1972) defined the circular residual for the ith observation as 

)ˆcos(1*

iii yye  . 

Here, 
*

ie  is linear and is bounded within the interval ]2,0[ .  Thus, we are not able to use 

this residual to investigate the assumption of error that follows a specific circular 

distribution such as the VM  distribution.  Abuzaid (2008) proposed a new definition of 

circular residual based on circular distance as follows  
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This can be written in a simpler form as follows:  

  2modˆiiiA yyr  . 

The new residuals 
iA

r  are in the range ],[  .   These residuals have been shown to be 

useful in investigating the goodness-of-fit of simple linear regression models (see 

Abuzaid et al. (2008)).  Numerical and simulation studies were carried out to show that 

the circular residuals 
iA

r , i=1,2,…,n are uncorrelated and follow a von Mises 

distribution with circular mean 0 and concentration parameter  .  In the next section, 

we look at a statistic developed based on the definition of circular distance that can be 

used to detect influential observations in DM circular regression models. 

 

6.3   Mean Circular Error 

 

Rao (1969) defined the circular distance between two circular observations i  

and j  as  jiijd   cos1 ,  2,0ijd  . We will use this statistic for detecting 

influential observations in the DM circular regression model by using the row deletion 
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approach. In this study, the DM circular regression model assumes the errors to follow a 

VM distribution with circular mean 0  and concentration parameter  . Abuzaid (2010) 

defined a statistic  known as mean circular error ( MCEs) given by 
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              (6.1) 

where yyd ii ˆ   is the circular distance between iy  and iŷ  , n is the 

sample size and  1,0MCEs .  

We intend to use a row deletion approach to see the effect on the values of 

MCEs  by removing an observation from the data set. The effect can be measured by 

looking at the maximum absolute difference between the value of the statistics for full 

and reduced data sets, denoted by DMCEs, such that  

  i
i

MCEsMCEsDMCEs  max     (6.2) 

where MCEs is the value for the full data set and  iMCEs   is the value of MCEs 

when the ith observation is removed from the data.  MCEs statistics are considered as a 

sort of arithmetic means which is not robust to the existence of influential observation. 

Thus, DMCEs can be used to detect possible influential observations in DM circular 

regression models.  Any observation will be identified as an influential observation if 

its  iMCEs   value gives rise to high value of DMCEs and the DMCEs exceeds a pre-

specified cut-off point.   

 

6.4 Sampling Behavior of the DMCEs Statistic 

 

We perform a simulation study to investigate the sampling behavior of the 

DMCEs statistic.  A set of circular random errors are generated from a von Mises 
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distribution with mean direction  = 0 and various values of concentration parameter 

 = 5, 10, 30 and 50.  We also generate the values of the independent circular random 

u  from )3,2/(VM  of size n. Observed value of the response variable v  are then 

calculated based on the DM circular regression model with fixed values of   =1.5, 

 =1.5, and 50. .  Upon fitting the simulated data, we obtain the fitted values v̂  of 

the DM circular regression model.  Then we compute the values of the MCEs statistic 

for the full data set and the  iMCEs   statistics for reduced data set,  i=1,2,…,n .  

Hence, we may then find the value of the DMCEs statistic.  

The process is carried out 2000 times for each combination of sample size and 

concentration parameter. We then calculate the 1%, 5% and 10% upper percentiles of 

the DMCEs statistic and the results are tabulated in Table 6.1.  The results will be used 

as the cut-off point in the hypothesis testing to determine whether an observation is an 

influential observation or not. 

 In general, for all n and percentile levels, the value of the cut-off point decreases 

as the concentration parameter  increases.  Similarly, as the sample size increases, the 

cut-off points decrease for all percentile levels and concentration parameter . 

Note that the cut-off points described above are only for the case when 5.0 . 

Further investigation shows that the cut-off points do not depend on the parameter 

values   and  , but depend on  . When   gets closer to 1, the cut-off points get 

larger. Unlike the   1COVRATIO i  statistic, we are able to obtain the cut-off points 

of DMCEs statistic for small  . The cut-off points get smaller as   gets closer to 0. 

Partial results are given in Appendix 8.  
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Table 6.1: Cut-off points of the DMCEs statistic 

 

n 

Level of 

percentiles 

  

5 10 20 30 50 

10 10% 0.0855 0.0697 0.0589 0.0508 0.0401 

  5% 0.0940 0.0818 0.0716 0.0630 0.0538 

  1% 0.1000 0.0985 0.0964 0.0899 0.0791 

20 10% 0.0400 0.0298 0.0170 0.0126 0.0096 

  5% 0.0457 0.0376 0.0283 0.0151 0.0106 

  1% 0.0500 0.0479 0.0428 0.0347 0.0301 

30 10% 0.0245 0.0162 0.0109 0.0087 0.0066 

  5% 0.0281 0.0195 0.0118 0.0095 0.0070 

  1% 0.0330 0.0295 0.0212 0.0169 0.0081 

40 10% 0.0178 0.0118 0.0082 0.0066 0.0051 

  5% 0.0200 0.0130 0.0089 0.0071 0.0055 

  1% 0.0247 0.0206 0.0104 0.0086 0.0065 

50 10% 0.0142 0.0098 0.0068 0.0056 0.0043 

  5% 0.0154 0.0105 0.0073 0.0060 0.0045 

  1% 0.0193 0.0131 0.0084 0.0068 0.0052 

60 10% 0.0119 0.0082 0.0058 0.0047 0.0036 

  5% 0.0131 0.0088 0.0061 0.0050 0.0039 

  1% 0.0156 0.0103 0.0068 0.0056 0.0044 

70 10% 0.0102 0.0072 0.0050 0.0041 0.0032 

  5% 0.0113 0.0076 0.0054 0.0043 0.0034 

  1% 0.0136 0.0089 0.0060 0.0047 0.0039 

80 10% 0.0092 0.0065 0.0045 0.0036 0.0028 

  5% 0.0097 0.0068 0.0047 0.0039 0.0030 

  1% 0.0112 0.0078 0.0052 0.0043 0.0034 

90 10% 0.0082 0.0057 0.0040 0.0033 0.0025 

  5% 0.0087 0.0060 0.0043 0.0035 0.0027 

  1% 0.0101 0.0070 0.0050 0.0039 0.0030 

100 10% 0.0074 0.0051 0.0036 0.0029 0.0023 

  5% 0.0079 0.0055 0.0038 0.0031 0.0024 

  1% 0.0090 0.0059 0.0043 0.0036 0.0027 

120 10% 0.0062 0.0044 0.0031 0.0025 0.0019 

  5% 0.0066 0.0046 0.0033 0.0027 0.0021 

  1% 0.0076 0.0052 0.0037 0.0030 0.0022 

150 10% 0.0051 0.0036 0.0025 0.0021 0.0016 

  5% 0.0054 0.0038 0.0027 0.0022 0.0017 

  1% 0.0062 0.0042 0.0029 0.0024 0.0019 
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6.5 Power of Performance of DMCEs Statistic 

 

We will now investigate the power of performance of the DMCEs statistic via a 

simulation study.  We follow the same scheme used in Section 6.3 to generate the 

simulated data. In addition, at point [d] of the response variable v , the observation ][dv  

is contaminated as follows 

  2mod][][*  dvdv  

where ][* dv is the contaminated observation at position ][d  and    is the degree of 

contamination in the range of 10   .  When 0 , there is no contamination at 

position ][d , whereas when 1 , the observation ][* dy  is located at the anti mode of 

its initial location.   

The generated data are fitted using Eq. (4.6) and consequently we obtain the 

fitted values v̂ . Then, we calculate the value of DMCEs for each simulated data set.  

The power of performances of DMCEs statistic is investigated by computing the 

percentage of correctly detecting the outlier at position ][d . We provide the result for 

5.1 ,  =1.5, and 50. .  

Figure 6.1 give the plot of the power of performance of the DMCEs statistic for       

κ = 10 and various sample sizes. We observe that the power of performance is an 

increasing function of sample size n.  The DMCEs statistic performs better for larger 

sample size. On the other hand, Figure 6.2 shows the performance of DMCEs for n = 70 

and various values of κ.  When larger values are used, the performance is almost 

similar, but clearly better than that for small κ.  Similar results are observed for other 

cases.   
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6.6 Practical Example  

 

We consider the Circadian data described in Chapter 4.  Figure 6.3 gives the spoke plot 

of the data.  By taking the horizontal axis in the right direction as 0 , the inner ring 

places the observations of S1 and the outer ring for S2. The lines connecting points on 

outer and inner rings means the blood pressure measurements correspond to the same 

student.   

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Power of performance of DMCEs statistics, for  =10 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Power of performance of DMCEs statistics, for n=70 
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It can be seen that the line corresponding to student number 8 on the left hand 

side of the plot lies a distance away from the others.  The student is flag as a candidate 

of outlier. By employing the DMCEs statistic which use the row deletion approach, such 

outlier is also known as an influential observation.  The data is of size n = 10 with the 

concentration parameter 64.17 .  Thus, from Table 6.1, the cut-off point to be used 

is 0.07.  Upon calculating the DMCEs for the data, we have DMCEs = 0.09 which is 

greater than the cut-off point and conclude that student number 8 is an influential 

observation. 

 

 
 

Figure 6.3:  Spoke plot of Circadian data 

 

 

 

Table 6.2:  Effect of influential observation on parameter estimates 

Data ̂  ̂  ̂  

With the 8
th

 observation 16.57 5.74 0.67 

Without the 8
th

 observation 51.02 39.98 0.82 

 

Further, we investigate the effect of the influential observation on the parameter 

estimates as tabulated in Table 6.2.  It can be seen that, when removing student number 
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8 from the data, ̂  and ̂  increase by a large value in degree while ̂  also changes 

from 0.669 to 0.820.  Therefore, it is important to investigate student number 8 further 

which might give useful information to the investigators. 

 

6.7 Summary 

 

In this chapter, we have considered the problem of detecting influential observations in 

the DM circular regression models via a row deletion method.  We use the DMCEs 

statistic for the purpose.  The cut-off points are obtained via a simulation study. The 

DMCEs statistic is shown to be able to detect influential observation better for larger 

sample size and larger concentration parameter.  When applied to the Circadian data, 

the DMCEs statistics is able to detect the observation number 8 as influential 

observation. 

 

 

 

 

 

 

 

 

 

 

 

 


