LASER EMISSIONS FROM SOLID-STATE DYE-DOPED POLYMERS

LIM CHIE HAW

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

NOVEMBER 2003
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Associate Professor Dr. Kwek Kuan Hiang, for his supervision, encouragement and effort throughout the period of this research work. I would like to take this initiative to express my appreciation to Professor Low Kum Sang for his inspiration and support. I am also indebted to Associate Professor Dr. Lo Kong Mun and Dr. Richard Wong Chee Seng from Chemistry Department for their advice in the chemistry work of this research.

I am also thankful to Mr. Loo Wat Tim for a fine job of machining various items. I extend my appreciation to Mr. Chang Chee Kin for his advice and support in the technical work of plastics molding. I would like to thank my seniors, Mr. T.K. Yong, Mr. M.D. Tan, Ms. S.S. Yap, Mr. P.F. Low and Mr. C.A. Tan for their encouragement and support. I also like to thank Mr. V.L. Tan, Mr. C.S. Goh, Mr. C.S. Chong, Mr. K.S. Goh, Mr. K.F. Ng, Mr. Y.T. Phua, Mr. Y.N. Phua, Mr. Muraly, Mr. Suresh, Mr. Venga, Mr. J.V. Lee and other companions in Laser Laboratory for their support and friendship.

I would like to thank the staffs of the Physics Department, University of Malaya who have contributed in one way or another in this research. I would like to thank Ministry of Science, Technology and Environmental, Malaysia for the award of National Science Fellowship. This project is supported in part by the F-Grant vote F0193/2001A.

Finally, I am eternally indebted to my family and my girl friend, Ms. N.F. Thong for their love and support in completing this work and to them I would like to dedicate this thesis.

LIM CHIE HAW

NOV, 2003
ABSTRAK

18.8 μm masing-masing. Bagi filem-filem PVA dop-C460 yang berketebalan substrak yang berlainan, kecepatan laser optima yang sebanyak 18.67% telah dicapai dari substrak kaca yang berketebalan 3 mm. Peranan substrak kaca ketika pengujian filem PVA dop-pewarna telah dikenalpastikan sebagai pemandu-gelombang berbilang yang mengizinkan foton-foton kembali ke filem untuk penyumbangan kepada proses stimulasi.
ABSTRACT

Laser emissions were obtained from dye-doped polymers, namely, C460/PMMA, R6G(ClO₄)/PMMA, C460/PVA and R6G(ClO₄)/PVA, under the excitation from a Transversely Excited (TE) nitrogen laser. C460/PMMA and R6G(ClO₄)/PMMA slabs were fabricated by using a low-pressure-compression molding method; whereas C460/PVA and R6G(ClO₄)/PVA films were fabricated in the form of thin films by using the dip-coat method. Laser efficiencies of 8.7% and 3% were achieved from the optimum dye concentrations of R6G(ClO₄)/PMMA (1 × 10⁻³ M) and C460/PMMA (2.25 × 10⁻² M) respectively. For dye-doped PVA thin films, the laser efficiencies of 8.27% and 6.3% were obtained from the optimum dye concentrations of C460/PVA (8 × 10⁻³ M) and R6G(ClO₄)/PVA (2.5 × 10⁻³ M) respectively. R6G(ClO₄) showed better compatibility than C460 when doped into PMMA. However, C460 showed better compatibility when doped into PVA. The refractive indices of these dye-doped polymer films were measured and used to estimate the thickness of the thin films. Investigations were carried out on the laser performance of C460-doped PVA films with varying film thickness, the presence of aluminium coating on glass substrate, and different glass substrate thickness. Maximum laser efficiency of 17% had been achieved at film thickness of about 30 μm. For aluminium-coated glass substrate, the laser output depended on whether the aluminium layer was in between the dye-doped PVA film and the substrate, or the substrate was in between the dye-doped PVA film and the aluminium layer. High efficiencies were obtained only from the latter case where laser efficiencies of 10.91%, 11.95% and 13.36% were obtained for film thicknesses of 11.5 μm, 14.9 μm and 18.8 μm respectively. For dye-doped PVA films on different glass substrate thickness, the optimum laser efficiency of 18.67% was achieved with glass substrate thickness of 3 mm. The role played by the
glass substrate during the excitation of dye-doped PVA film has been shown as that of a multiple waveguide which allows the photons to return to the film and contribute to the stimulated emission process.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>(a) Single prism as beam expander; (b) double prism as beam expander.</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>(a) Grazing incident laser-pumped tunable dye laser; (b) grazing incident laser-pumped tunable dye laser with a second grating.</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Schematic energy level diagram for a dye molecule.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Distribution of lasing wavelengths for some important classes of organic dyes.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>(a) Uncharged compound, (b) cationic dye, (c) anionic dye.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Fluorescein dye can exist as cationic, anionic and neutral molecules, which depend on the pH of the solution.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>The mesomeric structures of coumarin dyes.</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The C460 dimer.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Structure of Rhodamine 6G.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>The mesomeric structures of xanthene dyes.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Schematic of a typical liquid dye laser system.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Structure of (a) poly(methyl methacrylate) and (b) acrylic acid.</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Compression mold.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>The top part of the mold was compressed downwards by applying pressure through cap screws and springs.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>C460-doped PMMA slabs (center and right) and PMMA slab (left).</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>R6G(ClO₄)-doped PMMA slabs.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Setup for the study on the effect of annealing on dye-doped PMMA slab.</td>
<td>33</td>
</tr>
</tbody>
</table>
Figure 3.7 (a) – (i) Light spots from the dye-doped PMMA slabs with different annealing periods \((t_a = 0, 1, 2, 3, \ldots, 6, 7, 8)\), under the examination by HeNe laser.

Figure 3.8 The light spot of the undoped commercial Perspex® slab under the examination of a HeNe laser.

Figure 3.9 (a) Light spot of HeNe laser from the dye-doped PMMA slabs under vacuum condition during fabrication process, and undergo annealing process for 7 hours after fabrication; (b) Light spot of HeNe laser from the dye-doped PMMA slabs without vacuum condition during fabrication process, and undergo annealing process for 7 hours after fabrication.

Figure 3.10 Alcoholyis of poly(vinyl acetate).

Figure 3.11 C460-doped PVA films.

Figure 3.12 R6G(ClO₄)-doped PVA films.

Figure 3.13 Cross-sections of dye-doped PVA sample with different configurations.

\[A(n) = \text{single glass substrate with both surface coated with PVA, where } n \text{ is a number of repeated immersion and withdrawal; } B(n) = \text{single glass substrate with one of the surface coated with aluminium, both surfaces were coated with PVA; } C = \text{single glass substrate (with different thickness) with only one surface coated with PVA} \]

Figure 3.14 (a) The UV pump light propagated through dye-doped PVA film into glass substrate and reflected by aluminium-coated layer through glass substrate into the film; (b) the UV pump light propagated through dye-doped PVA film and directly reflected by aluminium-coated layer into the film without passing through the glass substrate.

Figure 4.1 Setup for the optical pumping of dye-doped polymer sample.

Figure 4.2 The four output laser beam of dye-doped PVA samples (beam ①, ②, ③ and ④).
Figure 4.3 The image of the two output laser beam from one of the output ends of dye-doped PVA sample.

Figure 4.4 Top-view of the two-stage Blumlein TE nitrogen laser.

Figure 4.5 Schematic diagram of the two-stage Blumlein circuit.

Figure 4.6 TE nitrogen laser output as a function of nitrogen gas pressure at various charging voltage.

Figure 4.7 The laser power meter equipped with pyroelectric-metallic detector head was placed inside a grounded metal box.

Figure 4.8 Schematic of the setup for solid-state dye laser spectral measurements.

Figure 4.9 Schematic drawing of the light path from air through prism to the dye-doped PVA film.

Figure 4.10 The dependence of θ_i on α and n_g for $1.35 < n_p < 1.50$.

Figure 4.11 The Michelson interferometer.

Figure 5.1 Laser spectra of C460 in PMMA and ethanol.

Figure 5.2 Laser spectra of R6G(ClO$_4$) in PMMA and ethanol.

Figure 5.3 The concentration dependence of the peak laser wavelength for C460/PMMA.

Figure 5.4 The concentration dependence of the peak laser wavelength for R6G(ClO$_4$)/PMMA.

Figure 5.5 (a) Two distinct bands were observed at the dye concentration of 1×10^{-2} M: one around 425 nm and another one around 457 nm. (b) The intensity of the 457-nm band increases with the increasing of C460 concentration. The 425-nm band decreased and eventually disappeared.

Figure 5.6 The concentration dependence of the laser efficiency for C460/PMMA.
Figure 5.7 The concentration dependence of the laser efficiency for R6G(ClO₄) / PMMA.

Figure 5.8 The output wavelength range of R6G(ClO₄) -doped PMMA for nitrogen laser pumping at 337.1 nm.

Figure 5.9 The refractive index of C460-doped PMMA slabs with different concentrations.

Figure 5.10 The refractive index of R6G(ClO₄) -doped PMMA slabs with different concentrations.

Figure 5.11 Photodegradation of C460/PMMA with number of nitrogen laser pulses at a repetition rate of 1 Hz.

Figure 5.12 Photodegradation of R6G(ClO₄) /PMMA with number of nitrogen laser pulses at a repetition rate of 1 Hz.

Figure 5.13 Laser spectra of C460 in PVA and ethanol.

Figure 5.14 Laser spectra of R6G(ClO₄) in PVA and ethanol.

Figure 5.15 The concentration dependence of the peak laser wavelength for C460/PVA.

Figure 5.16 The concentration dependence of the peak laser wavelength for R6G(ClO₄) /PVA.

Figure 5.17 The concentration dependence of the laser efficiency for C460/PVA.

Figure 5.18 The concentration dependence of the laser efficiency for R6G(ClO₄) /PVA.

Figure 5.19 The output wavelength range of C460-doped PVA for nitrogen laser pumping at 337.1 nm.

Figure 5.20 The output wavelength range of R6G(ClO₄) -doped PVA for nitrogen laser pumping at 337.1 nm.

Figure 5.21 The refractive index of C460-doped PVA films with different concentrations.

Figure 5.22 The refractive index of R6G(ClO₄) -doped PVA films with different concentrations.
Figure 5.23 Photodegradation of C460/PVA at different dye concentrations ((a) 7.0 $\times 10^{-3}$ M, (b) 8.0 $\times 10^{-3}$ M, (c) 9.0 $\times 10^{-3}$ M, (d) 1.0 $\times 10^{-2}$ M) with number of nitrogen laser pulses.

Figure 5.24 Photodegradation of R6G(ClO$_4$)/PVA with number of nitrogen laser pulses.

Figure 5.25 The equivalent thickness of C460-doped PVA films (estimated using Michelson interferometer) with different immersion number (n).

Figure 5.26 The fringe patterns of C460-doped PVA films by Michelson interferometer with white light source ((a) and (b)) and sodium lamp ((c) and (d)), for which (a) immersion number n < 5; (b) immersion number n > 5; (c) immersion number n = 2; (d) immersion number n = 8; (e) the orientation of the C460-doped PVA film/glass substrate in the system during the observation of fringe pattern. The thick dark vertical line is the shadow of the alignment pin of the interferometer.

Figure 5.27 The laser efficiency of C460-doped PVA films with different film thickness.

Figure 5.28 (a) The UV pump light propagated through dye-doped PVA film into glass substrate and reflected by aluminium-coated layer through glass substrate into the film; (b) the UV pump light propagated through dye-doped PVA film and reflected directly by aluminium-coated layer into the film without passing through the glass substrate.

Figure 5.29 The laser efficiency of C460-doped PVA films on aluminium-coated glass substrate with different film thickness at case (a) and (b).

Figure 5.30 Pumping of dye-doped PVA film with the combination of film-glass: case (a) pumped directly to the film; case (b) pumped through the glass substrate.

Figure 5.31 The laser efficiency of C460-doped PVA film with different thickness of glass substrates for case (a) and case (b).

Figure 5.32 The schematic of the possible paths of the spontaneous emission from the dye-doped PVA film with glass substrate (not in scale).
Figure 5.33 The schematic of light rays entering the glass substrate at various incident angles \(0^\circ \leq \theta_i < 90^\circ\): (a) rays entering at the incident angles in the range of \(0^\circ \leq \theta_i < 43^\circ\); (b) rays entering at the incident angles in the range of \(43^\circ \leq \theta_i < 90^\circ\).

Figure 5.34 The photon propagating along the film-glass boundary entered the glass substrate at grazing angle.

Figure 5.35 (a) The schematic of the propagation of rays which enter the film-glass boundary at or near grazing angle within the glass substrates of thicknesses from 1 – 3 mm during the excitation of dye-doped PVA film; (b) the paths of the rays reflected from the vertical edges of the glass substrate of thicknesses from 1 – 3 mm, which are returned to the film, to cause stimulated emissions of dye-doped PVA film. (Note: A.S. = area of stimulation due to rays reflected from the vertical edges)

Figure 5.36 (a) The schematic of the propagation of rays which enter the film-glass boundary at or near grazing angle within the glass substrates of thicknesses from 5 – 10 mm during the excitation of dye-doped PVA film; (b) the paths of the rays reflected from the vertical edges of the glass substrate of thicknesses from 5 – 10 mm, which are returned to the film, to cause the stimulated emissions of dye-doped PVA film. (Note: A.S. = area of stimulation due to rays reflected from the vertical edges)
LIST OF TABLE

Table 3.1 The vertical and horizontal divergence of dye-doped PMMA slab with different intervening medium under the examination of HeNe laser. 35
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xiii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 1 INTRODUCTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction to Dye Lasers</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Historical Review of Dye Laser</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Objectives of This Project</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Structure of the Dissertation</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2 REVIEW AND PRINCIPLES OF DYE LASERS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Principles of Dye Laser</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Laser Dyes</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Coumarin Derivatives</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2 Xanthene Dyes</td>
<td>15</td>
</tr>
</tbody>
</table>
2.3 Pumping Methods of Dye Lasers

2.3.1 Flashlamp-Pumped Dye Lasers
2.3.2 Continuous Wave (CW) Laser Pumped Dye Lasers
2.3.3 Pulse Laser Pumped Dye Lasers

2.4 Outline of Solid-State Dye Lasers

CHAPTER 3 HOST MATERIALS AND DOPING PROCESS

3.1 Host Materials

3.1.1 Homo-Polymers
3.1.2 Modified Polymers
3.1.3 Co-Polymers
3.1.4 Sol-Gel Glasses
3.1.5 Polycom Glasses
3.1.6 Organically Modified Silicate (ORMOSIL)

3.2 Poly(methyl methacrylate)

3.2.1 Fabrication of Dye-Doped PMMA Slabs
3.2.2 Annealing of Dye-Doped PMMA Slabs

3.3 Poly(vinyl alcohol)

3.3.1 Fabrication of Dye-Doped PVA Films
3.3.2 Configurations of Dye-Doped PVA Films

CHAPTER 4 EXPERIMENTAL SETUP AND MEASUREMENTS

4.1 Optical Pumping of Dye-Doped Polymers

4.2 Transversely Excited (TE) Nitrogen Laser
4.3 Measurement Devices

4.3.1 Laser Output Energy Measurements
4.3.2 Laser Spectra Measurements

4.4 Determination of Refractive Index and Thickness of Dye-Doped Thin Film

4.4.1 Refractive Index Measurement
4.4.2 Thickness of the Dye-Doped PVA Films

CHAPTER 5 RESULTS AND DISCUSSIONS

5.1 Performance of Dye-Doped PMMA Slabs

5.1.1 Concentration Dependence of Peak Laser Wavelength
5.1.2 Concentration Dependence of Laser Efficiency
5.1.3 Photostability of Dye-Doped PMMA Slabs

5.2 Performance of Dye-Doped PVA Slabs

5.2.1 Concentration Dependence of Peak Laser Wavelength
5.2.2 Concentration Dependence of Laser Efficiency
5.2.3 Photostability of Dye-Doped PMMA Slabs
5.2.4 Dependence of the Performance of Dye-Doped PVA Films on Film Thickness, Aluminium-Coating on Substrate, and Glass Substrate Thickness

5.2.4.1 Variation of Dye-Doped PVA Films Thickness with the Number of Immersion
5.2.4.2 Dye-Doped PVA Film with Aluminium-Coated Glass Substrate
5.2.4.3 Dye-Doped PVA Film with Glass Substrate of Different Thickness
5.2.4.4 Summary
CHAPTER 6 CONCLUSIONS

6.1 Conclusions 99
6.2 Future Work 102

REFERENCES 103