| | | | Page | |-------|----------|--|------| | ACKNO | OWLEDGEM | ENTS | iii | | ABSTE | RACT | | iv | | ABSTE | RAK | | vi | | CONT | ENTS | | viii | | LIST | OF TABLE | ES | xiii | | LIST | OF FIGU | RES | xvi | | CHAP? | FER 1 In | troduction | | | 1.1 . | The Oil | Palm | 1 | | 1.2 | Extract | ion of Palm Oil | 2 | | 1.3 | Palm Oi | l Effluent | 3 | | 1.4 | Uses of | Palm Oil | 5 | | 1.5 | Emulsio | ns | 6 | | 1.6 | Objecti | ves of Study | 8 | | | Referen | ces | 11 | | CHAP | | ipid Constituents of Oil Droplets
rom Palm Oil Sludge | | | 2.1 | Introdu | ction | 17 | | | 2.1.1 | Palm Oil Lipids | 18 | | 2.2 | Materia | ls and Methods | 22 | | | 2.2.1 | Separation of Oil Droplets from
Centrifuged Sludge | 22 | | | 2.2.2 | Microscopy | 23 | | | 2.2.3 | Particle Sizing | 23 | | | 2.2.4 | Extraction of Lipids from Dried
Oil Droplets | 24 | | | 2.2.5 | Column Chromatography of Lipid Extract | 24 | | | 2.2.6 | Thin Layer Chromatography | 25 | | | 2.2.7 | Identification of Lipids | 26 | | | | | Page | |-------------------|---|---|----------------------------| | | 2.2.8 | Preparation of Visualiser Sprays | 26 | | | 2.2.9 | Quantification of Glycolipids | 28 | | | 2.2.10 | Quantification of Phosphorus | 28 | | | 2.2.11 | Fatty Acid Composition Analysis | 29 | | | 2.2.12 | Glycerides Analysis | 30 | | 2.3 | Results | and Discussion | | | | 2.3.1 | Separation of Oil Droplets and Phosphorus Determination | 31 | | | 2.3.2 | Microscopy and Particle Sizing | 33 | | | 2.3.3 | Chemical Analysis of Oil Droplets | 35 | | 2.4 | Conclus | ion | 43 | | | Reference | ces | 46 | | | | | | | CHAP' | TER 3 | Surface Active Properties of Palm Oil | | | CHAP: | | _ | 70 | | | Introduc | ction | 70
73 | | 3.1 | Introduc | ction | | | 3.1 | Introduc
Materia | ction | 73 | | 3.1 | Introduc
Materia
Methods | ction | 73
75 | | 3.1 | Introduc
Materia
Methods
3.3.1 | ction
ls
Surface Tension Measurement | 73
75
75 | | 3.1 | Introduc
Materia:
Methods
3.3.1
3.3.2
3.3.3 | Surface Tension Measurement Interfacial Tension Measurement Exraction of Alcohol Insoluble Residue (AIR) of Sludge from Palm | 73
75
75
76 | | 3.1 3.2 3.3 | Introduc
Materia:
Methods
3.3.1
3.3.2
3.3.3
Calcula
per Mole | Surface Tension Measurement Interfacial Tension Measurement Exraction of Alcohol Insoluble Residue (AIR) of Sludge from Palm Oil Mill tion of Surface Excess, [and area | 73
75
75
76
77 | | 3.1
3.2
3.3 | Introduc
Materia:
Methods
3.3.1
3.3.2
3.3.3
Calcula
per Mole | Surface Tension Measurement Interfacial Tension Measurement Exraction of Alcohol Insoluble Residue (AIR) of Sludge from Palm Oil Mill tion of Surface Excess, [and area ecule, σ | 73
75
75
76
77 | # PERPUSTAKAAN UNIVERSITI MALAYA | | | | Page | |------|-----------|---|------| | | 3.5.3 | Surface Active Substances Associated with the Oil Droplets from the Aqueous Sludge | 89 | | | 3.5.4 | Surface Activity of Low Concentration
of Pure Monoglycerides and Phos-
pholipids at the Refined Palm Oil
(NBDPO)/Water Interface | 90 | | 3.6 | Conclusi | ion | 100 | | | Reference | ces | 103 | | CHAP | | Properties of Palm Oil Emulsions
Prepared with Nonionic Surfactants | | | 4.1 | Introduc | ction | 132 | | 4.2 | Materia: | ls and Methods | 136 | | | 4.2.1 | Material | 136 | | | 4.2.2 | Preparation of Emulsions | 137 | | | 4.2.3 | Stability of Emulsions - Creaming | 140 | | | 4.2.4 | Particle Size Measurement | 140 | | | 4.2.5 | Interfacial Tension Measurement | 141 | | | 4.2.6 | Viscosity Measurements | 141 | | | 4.2.7 | Effect of Electrolytes and pH on Emulsion Stability | 141 | | 4.3 | Results | And Discussion | 142 | | | 4.3.1 | Stability of Palm Oil Emulsions prepared using Mixed Emulsifiers | 142 | | | 4.3.2 | Particles Size Distribution | 150 | | | 4.3.3 | Interfacial Tension | 152 | | | 4.3.4 | Emulsification of Palm Oil using Tween 40 | 155 | | | 4.3.5 | Estimation of Surface Area of Tween 40 | 157 | | | | | Page | |------|-------------------|---|------| | | 4.3.6 | Stability of Emulsion with respect to pH and Electrolytes | 162 | | | 4.3.7 | Viscosity of Palm Oil-in-Water
Emulsion | 163 | | | 4.3.8 | Preparation of Emulsion - Order of Addition | 164 | | | 4.3.9 | Emulsification of Palm Oil with Span 40 | 165 | | 4.4 | Conclus | sion | 167 | | | Referer | nces | 171 | | CHAP | | Properties of Palm Oil Emulsions
Prepared using Emuldan | | | 5.1 | Introdu | action | 205 | | 5.2 | Binary
Crystal | Phase System and Liquid
line Phases | 207 | | 5.3 | Ternary | y System | 210 | | 5.4 | Stabil: | isation of Emulsions | 211 | | 5.5 | Rheolog | gy of Emulsions | 213 | | | 5.5.1 | Measurement of Emulsion Rheology | 215 | | 5.6 | Outline | e of Study | 216 | | 5.7 | Materia | als and Methods | 217 | | | 5.7.1 | Mapping of Ternary Phase Diagram | 218 | | | 5.7.2 | Preparation of Palm Olein-in-
Water Emulsion using (Samples
1-24) | 218 | | | 5.7.3 | Preparation of Emuldan in Water (Samples A-G) | 219 | | | 5.7.4 | Particle Sizing | 219 | | | 5.7.5 | Rheological Measurements | 219 | | 5.8 | Result | s and Discussion | 221 | | | | | | | Page | |----------|---------|---------|----------------------------|--------------|------| | 5.8 | .1 Te | nary Ph | ase Diagram | | 221 | | 5.8 | .2 Cr | eaming | Stability | | 223 | | 5.8 | .3 Pa | rticles | Size Distrib | ution | 224 | | 5.8 | .4 Op | tical M | icroscopy | | 226 | | 5.8 | .5 Rh | eologic | al Properties | of Emulsions | 228 | | | 5. | | Flow Properti
Emulsions | es of | 229 | | | 5. | 8.5.2 | Viscoelastic | Properties | 236 | | 5.8 Con | clusion | | | | 255 | | Ref | erences | ; | | | 259 | | | | | _ | | 22/ | | CHAPTER | 6 Fina | 1 Concl | usion | | 320 | | PUBLICAT | TIONS | | | | 329 | # LIST OF TABLES | CHAPTER 1 | | Page | |-----------|--|------| | Table 1. | Twelve key physical factors affecting the stability and rheology of emulsions (0=not important, 1=sometimes important, 2=often important, 3=generally important) | 15 | | CHAPTER 2 | | | | Table 1. | Triglyceride Composition w/w of Palm Oil and Palm Kernel Oil | 53 | | Table 2. | Fatty Acid Composition w/w of Palm Oil and Palm Kernel Oil | 53 | | Table 3. | Phosphorus and Nitrogen Contents of
the Cream Layer of Oil Droplets | 54 | | Table 4. | Composition of Twice Water-Washed Oil Droplets | 55 | | Table 5. | Lipid Composition of the CHCl $_2$ /MeOH Extract of the Dried Oil Droplets by Column Chromatography (w/w) | 55 | | Table 6. | Lipid Composition of Chloroform Fraction Isolated from Cream Layer Separated by Column Chromatography and Determined by Gas Chromatography | 56 | | Table 7. | Fatty Acid Composition of the
Neutral Lipids (Chloroform
Fraction) Isolated from the
Cream Layer as Determined by
Gas Chromatography | 56 | | Table 8. | Relative % w/w of Various
Glycolipids (Acetone Fraction)
extracted from the oil droplets
(cream layer) and Retention
Factors Determined from Thin Layer
Chromatography in the solvent
System (CHCl ₃ :MeOH:CH ₃ COOH:H ₂ O)
70:25:25:6 (v/v) | 57 | | | | Page | |-----------|--|------| | Table 9. | Fatty Acid Composition of
Phospholipids from CHCl ₃ /MeOH
Extract of Dried Oil Droplets | 58 | | CHAPTER 3 | | | | Table 1. | Fatty Acid Composition of Chemically Refined Palm Oil (NBDPO) | 110 | | Table 2. | Quality of Chemically Refined Palm Oil (NBDPO) | 110 | | Table 3. | Lipid Composition of Partially
Processed Palm Oil | 111 | | Table 4. | Derived Best Fit Equation based
on the Interfacial Tension vs ln
Concentration of Additives added to
Palm Oil (NBDPO) | 112 | | Table 5. | Interfacial Tension of Palm Oil/
Water at Various Stages of Refining
Measured at 60°C | 113 | | Table 6. | Properties of AIR precipatated using 1:1 (v/v) (Methanol: Supernatant) at pH 3, at Room Temperature | 114 | | CHAPTER 4 | | | | Table 1. | Composition of Palm Oil (RBDPO) Used | 177 | | Table 2. | Fatty Acid Composition of Palm Oil (RBDPO) Used | 177 | | Table 3. | Mean Droplet Diameter and Span of
Palm Oil Emulsions Prepared with
Emulsifier Mixtures of Span 40
and Tween 40 at various HLBs | 178 | | Table 4. | A Comparison of the Interfacial
Tension of Palm Oil (RBDPO)/Water
in Mixtures of Various HLB
and Tween 40 only in Palm Oil
(RBDPO) | 179 | | | | Page | |-----------|---|------| | Table 5. | Expected Surface Area of the
Tween 40 Molecule at the Oil
Droplet Surface for Complete
Coverage. Emulsions consist of
30:100 (wt. basis) of Oil:Water | 180 | | CHAPTER 5 | | | | Table 1. | Composition of Emuldan | 274 | | Table 2. | Fatty Acid Composition of Emuldan | 274 | | Table 3. | Composition and Appearance of Emulsions prepared using Olein, Emuldan and Water | 275 | | Table 4. | Composition and Appearance of Samples
Prepared using Water and Emuldan | 276 | | Table 5. | Droplet Size Distribution of Samples
1-18,A,B and C Sample,Droplet Size | 277 | | Table 6. | Rheological Equations obtained by
Curve Fitting of Samples A-B and
Samples 1-12. Apparent Viscosities
deduced at Shear Rate 30 s-1 | 278 | | Table 7. | Steady State Compliance Je and Zero Shear Viscosity No of Emuldan/Water and Emuldan/Oil/Water Systems. | 279 | | Table 8. | Rheological Data of Samples C-G and Samples 13-24 at the Critical Stress Value $T_{\rm C}. \label{eq:continuous}$ | 280 | # LIST OF FIGURES | | | | Page | |---------|----|---|------| | CHAPTER | | 1 | | | Fig. | 1. | Flow Diagram of Palm Oil Extraction in a Palm Oil Mill | 16 | | CHAPT | ER | 2 | | | Fig. | 1. | Common Plant Lipids | 59 | | Fig. | 2. | Sludge After High Speed
Centrifugation | 61 | | Fig. | 3. | Oil Droplets of the Cream Layer
Separated from the Sludge by
Centrifugation (Mag 200x) | 61 | | Fig. | 4. | Solids from Bottom Sediment
Isolated from Sludge by
Centrifugation | 62 | | Fig. | 5. | Particle Size Distribution of
of Oil Droplets in the Cream Layer
Isolated by Centrifugation of
the Sludge | 63 | | Fig. | 6. | Particle Size Distribution of
the Oil Droplets in the cream
layer after Washing Twice
with Water; b: Particle Size
Distribution of the Sediments
Collected from the Oil Layer
after washing Twice with water | 64 | | Fig. | 7. | Thin-layer Chromatography of CHCL3/MeOH Extract on Silica Gel G. Solvent System CHCl3:MeOH:CH3COOH:H2O (170:25:25:6). | 65 | | Fig. | 8. | Thin Layer Chromatography of the Chloroform Fraction from column chromatography. Solvent system Hexane:Diethyl ether:Formic Acid (80:20:2), visualised with 2,7'-Dichlorofluorescein spray (yellow) and Ferric Chloride spray (lipids are stained brown). | 66 | | | Page | |---|------| | Fig.9. TLC of the Different Fractions
Separated by Silicic Acid Column
Chromatography. Solvent System
CHCl ₃ :MeOH:Ch ₃ COOH:H ₂ O (170:25:25:6). | 67 | | Fig. 10. A Comparison of the Retention Time of the Gas Chromatogram of Some Sterol Standards and that of the Unsaponifiables from the Oil Droplets. | 68 | | CHAPTER 3 | | | Fig. 1. Possible Orientation of Emulsifiers at the Oil-Water Interface. | 115 | | Fig. 2. Refining Processes for Crude Palm Oil | 116 | | Fig. 3. The Effect of Various Types of
Partially Refined Oil on the
Interfacial Tension of Chemically
Refined Palm Oil (NBDPO)/Water
Interface | 117 | | Fig. 4. The Effect of Various Additives
on the Interfacial Tension of
Chemically Refined Palm Oil (NBDPO)/
Water Interface | 118 | | Fig. 5. Interfacial Tension and Surface
Tension of Supernatant from the
Sludge at Various
Temperatures. | 119 | | Fig. 6. Effect of Dilution with H ₂ O at 60°C on the Surface Tension of Supernatant and Interfacial Tension of Palm Oil (NBDPO)/Supernatant and Crude Palm Oil/Supernatant respectively. | 120 | | Fig. 7. Interfacial Tension of the Alcohol
Insoluble Residue (AIR) in Water
against Palm Oil (NBDPO) as a
function of the Concentration of
AIR in Water. | 121 | | Fig. 8. Effect of Additives on the
Interfacial Tension of Palm Oil
(NBDPO)/Water System | 122 | | | | | Page | |------|-----|--|------| | Fig. | 9. | Influence of Chain Length of
Monoglycerides on the Interfacial
Tension of Palm Oil (NBDPO)/Water
System at 60°C. | 123 | | Fig. | 10. | Influence of Unsaturation of
the Monoglycerides (18 carbon
atoms) on the Interfacial Tension
of Palm Oil (NBDPO)/Water
System at 60°C. | 124 | | Fig. | 11. | Influence of Unsaturation of the Monoglycerides (16 carbon atoms) on the Interfacial Tension of Palm Oil (NBDPO)/Water System at 60°C. | 125 | | Fîg. | 12. | Influence of Chain Length of
Monoglycerides on the Molecular
Area of the Monoglycerides
at the Palm Oil (NBDPO)/Water
Interface. | 126 | | Fig. | 13. | Influence of Unsaturation of Monoglyceride (18 carbon atoms) on the Molecular Area of the Monoglycerides at the Palm oil (NBDPO)/Water Interface. | 127 | | Fig. | 14. | Influence of a Double Bond on the Molecular Area of Monopalmitin at the Palm Oil (NBDPO)/Water Interface. | 128 | | Fig. | 15. | Interfacial Tension of Palm Oil
(NBDPO)/Water Interface in the
presence of Various Phospholipids
Added to the Palm Oil (60°C). | 129 | | Fig. | 16. | Molecular Structures of
Phospholipids | 130 | | Fig. | 17. | Influence of Various Phospholipids
on the Molecular Area of the
Phospholipids at the Refined Palm
oil (NBDPO)/ Water Interface at 60°C | 131 | | | | Page | |-----------|---|------| | CHAPTER 4 | 4 | | | Fig. 1. | Molecular Structure of (a) Polyoxyethylene Sorbitan Esters and (b) Sorbitan Esters Series of Surfactants illustrating the Possible Orientation of the Hydrophilic and Hydrophobic Group at the Oil/Water Interface. | 181 | | Fig. 2. | Cause and Effect Diagram for
the Factors Affecting the
Properties of Emulsions. | 182 | | Fig. 3. | Stability of 23.0% w/w Palm
Oil Emulsions (50 ml) at 60°C
with 5.0% w/w Emulsifier Mixture
in Oil after 1 and 10 Days Storage. | 183 | | Fig. 4. | Stability of 23% w/w palm oil emulsions at 60°C with 1% w/w emulsifier mixture in oil after 3 weeks of storage. | 184 | | Fig. 5. | Stability of 50% w/w palm oil emulsions at 60°C with 0.1% w/w emulsifier mixture in oil after 2 weeks storage. | 185 | | Fig. 6. | Droplet size distribution of 23.0% w/w palm oil emulsions at 5.0% w/w emulsifier mixtures of different HLB values. | 186 | | Fig. 7. | Droplet size distribution of 23.0% w/w palm oil emulsions at 1.0% w/w emulsifier mixtures of different HLB values. | 187 | | Fig. 8. | Droplet size distribution of 50% w/w palm oil emulsion or 0.1% w/w emulsifier mixtures of different HLB values. | 188 | | Fig. 9. | Effect of ageing at 60°C on the droplet size distribution of 23.0% w/w palm oil emulsion at 1.0% w/w emulsifier mixture with a HLB value of 11.3. | 189 | | | | | Page | |------|-----|--|------| | Fig. | 10. | Effect of aging at 60°C on the droplet size distribution of 50% w/w palm oil emulsion at 0.1% w/w emulsifier mixture with a HLB value of 9.37. | 190 | | Fig. | 11. | Interfacial tension of palm oil against water at various concentration of Tween 40 and Span 40 in oil. | 191 | | Fig. | 12. | Interfacial tension of palm oil against water at three different concentrations of emulsifier mixture with various HLB. | 192 | | Fig. | 13. | Effect of Tween 40 concentration on the droplet size distribution 50% w/w palm oil emulsions. | 193 | | Fig. | 14. | Effect of Tween 40 concentration on the (a) droplet size of 23% v/v palm-oil emulsions and (b) interfacial tension of the palm oil-water interface at 60°C. | 194 | | Fig. | 15. | Stability of 50% w/w palm oil emulsion (50 ml) made with different concentrations of Tween 40 at 60°C. | 195 | | Fig. | 16. | Effect of oil phase volume on the droplet size distribution of palm oil emulsions containing 1.0% Tween 40 in oil. | 196 | | Fig. | 17. | The mean droplet size of palm oil emulsions at various phase volume using 1.0% w/w Tween 40 in oil. | 197 | | Fig. | 18. | Photomicrograph of emulsion droplets prepared with 1% Tween 40 in oil at ϕ = 0.7. | 198 | | Fig. | 19. | Viscosity curves of various phase volume of palm oil emulsions prepared with 1% w/w Tween 40 in oil. Inset shows apparent viscosities as a function of phase volume at 520s ⁻¹ . | 199 | | | | | Page | |------|-----|--|------| | Fig. | 20. | Test of thixotropy illustrated by the viscosity curves of palm oil-in-water emulsion of ϕ 0.69 at 60°C. Inset shows programme used to test thixotropy. | 200 | | Fig. | 21. | Stability of 23% w/w palm oil emulsions at 60°C with various concentrations of Span in oil. | 201 | | Fig. | 22. | Effect of Span 40 concentration in oil on the droplet size distribution of 23.0% w/w palm oil. | 202 | | Fig. | 23. | Effect of aging at 60°C on the droplet size distribution of 23% w/w palm oil emulsions at 0.14% and 1.0% w/w Span 40 in oil. | 203 | | СНАР | TER | 5 | | | Fig. | 1. | Structure Models showing (a) Orientation of Surfactant Molecules in the Crystalline stage; b) Formation of lamellar mesophase above Tc (Kraft point) in the presence of water and (c) Formation of gel phase below Tc (d) Hexagonal I, cylindrical aggregates of polar lipids with polar group in contact with the continuous water phase (e) Hexagonal II, cylindrical aggregates of water in a continuous lipid phase. | 281 | | Fig. | 2. | Phase Diagram deduced by Visual
Appearance of Samples indicating
the Location of the Emulsions Studied. | 282 | | Fig. | 3. | Ternary Phase Diagram Indicating
the Location of the Samples (1-24)
with Respect to the Composition of
the Three Components of Emuldan:Olein:
Water on Weight Basis. | 283 | | Fig. | 4. | Visual Observation of Samples A-C and | 284 | | | | | Pag | |------|-----|--|-----| | Fig. | 5. | Effect of Concentration of Emuldan
in Olein on the Interfacial Tension
of the Olein/Water System at 60°C | 285 | | Fig. | 6. | Droplet Size Distribution of Emulsion Samples No.1-6 and A,B,C. | 286 | | Fig. | 7. | Droplet Size Distribution of Emulsion Samples 7-12. | 287 | | Fig. | 8. | Droplet Size Distribution of Emulsion Samples 13-18. | 288 | | Fig. | 9. | Mean Droplet Diameter of Emulsions as a Function of Wt. % Emuldan/Water at Various Fixed Concentration of Olein. | 289 | | Fig. | 10. | Mean Droplet Diameter of Emulsion as
a Function of Wt.% Olein/Water at
Various Concentration of Emuldan. | 290 | | Fig. | 11. | Mean Droplet Diameter as a Function of Wt.% Emuldan/Oil at Various Concentration of Water No systematic correlation among the samples could be determined). | 291 | | Fig. | 12. | Optical Micrograph of Sample 2,
Containing 3:25:72 wt.%) of
Emuldan:Olein:Water (Mag 10x5). | 292 | | Fig. | 13. | Micrograph of Sample 5 containing
3:10:87 wt.%) of Emuldan:Olein:Water.
Note much smaller droplets compared
to sample 2, Fig. 12 (Mag 10x5). | 293 | | Fig. | 14. | Optical Micrograph of Sample 13 containing 10:30:60 (wt.%) of Emuldan:Olein:Water. Note aggregation of droplets but well dispersed smaller particles in the background (Mag 10x5). | 294 | | Fig. | 15. | Optical Micrograph of Sample 20 containing 15:25:60 (wt.%) of Emuldan: Olein:Water. (Mag 10x5). | 295 | | | | | Page | |--------|-----|---|------| | Fig. 1 | | Optical Micrograph Showing Crystal Formation after Three Weeks Storage of Sample 10 containing 5:15:80 (wt.*) of (Emuldan:Olein:Water). Note well dispersed smaller particles in the background. (Mag.10x5) | 296 | | Fig. 1 | | Optical Micrograph of Sample 9 containing 5:20:75 (wt. %) of Emuldan:Olein:Water stored for 6 months (Mag.10x5). | 297 | | Fig. 1 | .8. | Optical Micrograph of Dispersions
Formed with 5 Wt.% Emuldan in Wate.,
Showing Birefringent Droplets will
Extinction Crosses under Polarised
Light. | 298 | | Fig. 1 | .9. | Optical Micrograph of Lamellar
Liquid Crystalline Structure
of Sample D containing 15 Wt.%
Emuldan in Water under Polarised
Light (Mag 10x5). | 299 | | Fig. 2 | 20. | Optical Micrograph of Lamellar
Liquid Crystalline Structures
of Sample E containing 20 Wt. %
Emuldan in Water (Mag. 10x5). | 300 | | Fig. 2 | 21. | Flow Curves of Samples A,B and
1-12 as illustrated by Samples
A,B, 7 and 11. (Flow curves of the
rest of the samples are close and
thus not shown). | 301 | | Fig. 2 | 22. | Viscosity Curves of Samples A,B
and 1-12 as illustrated by Samples
A,B, 7 and 11. Flow curves of
the rest of the samples are
very close and thus are not shown. | 302 | | Fig. 2 | 23. | Apparent Viscosity at Shear Rate,
30s-1 against Wt. Emuldan in Water
for Samples A, B and 1-12. Note
the extremely low 100 values
(0.001-0.036 Pa s). | 303 | | Fig. 2 | 24. | Illustrative Creep-Recovery Curve of a Viscoelastic Material | 304 | | Ti- 1 | 2.5 | Groom Recovery Curve of Samples C-G | 305 | | | | Page | |----------|---|------| | Fig. 26. | Creep Recovery Curves of Samples 13-24 as illustrated by Samples 13,16 and 23. | 306 | | Fig. 27. | A Plot of Steady State Compliance
Jeo of Samples 13-24 and C-G as a
Function of Wt.% Emuldan/Water. | 307 | | Fig. 28. | A Plot of Zero Shear Viscosity $\eta_{\rm O}$ for Samples C-G and 13-24 as a Function of Wt.% Emuldan/Water. | 308 | | Fig. 29. | Illustrative Shear Stress Response
of a Viscoelastic Material. The
shift angle is a Measure of the
Degree of Viscoelasticity of the
Material. | 309 | | Fig. 30. | Stress Sweep of Samples C-G at 1 Hz.
Note G* overlaps G'. Inset shows
the stress sweep overlap of samples E-G. | 310 | | Fig. 31. | Plot of G' and G" as a Function of Wt.% of Emuldan/Water at the Linear Viscoelastic Region. (Note G' > G") | 311 | | Fig. 32. | Typical Stress Sweep of Samples
13-18 at 1 Hz. as illustrated by
Samples 14,17 and 18. Note G*
overlaps G' except sample 18. | 312 | | Fig. 33. | Plot of G', G" as a Function of Wt.% Emuldan/Water at the Linear Viscoelastic Region (Note G'>G" except sample 18). | 313 | | Fig. 34. | Typical Stress Sweep of Samples 18-24 at 1 Hz as illustrated by samples 20,21 and 23. Note G* overlaps G'. | 314 | | Fig. 35. | Plot of Critical Stress of Samples
C-G 13-24 as a Function of Wt.%
Emuldan/Water. | 315 | | Fig.36. | Plot of G' at τ_c as a Function of Wt.\% Emuldan/Water illustrating the Decrease in G' in the Ternary System (Samples 13-24) as compared to the Binary System (Samples C-G). | 316 | | | | | Page | |------|-----|---|------| | Fig. | 37. | Frequency Sweep of Samples C-G at 20 Pa.
Note G* overlaps G'. Inset shows the
Frequency Sweep Overlap of Samples E-G. | 317 | | Fig. | 38. | Typical Mechanical Spectra of Sample 13-18 at SPa as illustrated by Samples 13, 15, 17 and 18. Note overlap of G* and G'. | 318 | | Fig. | 39. | Typical Mechanical Spectra of Samples 19-24 at 20 Pa as illustrated by Samples 19,20 and 23. Note overlap of G* and G'. | 319 |