KINETICS AND MECHANISM OF AMINOLYSIS OF
p-NITROPHENYL ACETATE IN MIXED WATER-
ACETONITRILE SOLVENTS

NOR SALMI BINTI ABDULLAH

SUBMISSION OF DISSERTATION FOR THE
FULFILMENT OF THE DEGREE
OF MASTER OF SCIENCE

CHEMISTRY DEPARTMENT
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR
2009
KINETICS AND MECHANISM OF AMINOLYSIS OF p-NITROPHENYL ACETATE IN MIXED WATER-ACETONITRILE SOLVENTS

NOR SALMI BINTI ABDULLAH

CHEMISTRY DEPARTMENT
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR
MARCH 2009
ABSTRACT

First chapter deals with the literature review of amino alcohols and their derivatives, as well as kinetics and mechanism of aminolysis of esters. The uses of these compounds in biological, pharmacological, synthesis, industries and applied chemistry were discussed briefly. The literature search on some available methods for the synthesis of amine derivatives and esters such as \(N,N\)-(diethylaminomethyl)benzyl alcohol (35) and \(p\)-nitrophenyl acetate (26) is described.

Chapter two reports the experimental details on the syntheses and characterization of \(N,N\)-(diethylaminomethyl)benzyl alcohol (35), \(N,N\)-diethylphthalamic acid (34), 2-((diethylamino)methyl)benzyl acetate (42), \(N\)-benzylacetamide (44) and \(N,N\)-diethylacetamide (45).

Chapter three provides a brief introduction of chemical kinetics and common methods of carrying out the kinetic studies. General procedures in determining suitable wavelength (\(\lambda\)) for kinetic studies have been discussed. Some experimental details of product characterization using Reverse-phase High Performance Liquid Chromatography have been also described. The results have been divided into four parts according to the types of amines.

Final chapter contains the results of aminolysis of 26. These results are classified into four major parts, 1) primary amines, 2) secondary amines, 3) tertiary amines and 4) amino alcohols (tertiary amines). The aminolysis of 26 with primary and secondary amines gave an amide and \(p\)-nitrophenolate ion (48), while the hydrolysis of 26 with tertiary amines and amino alcohol gave acetic acid and 48. The aminolysis of 26 with a series of amines (methylamine, \(N,N\)-dimethylamine, \(N,N\)-diethylamine, benzyamine, \(N,N\)-methylbenzylamine, \(N,N\)-ethylbenzylamine, \(N,N\)-
dimethylbenzylamine and \(N,N\)-(diethylaminomethyl)benzyl alcohol) have been studied in mixed aqueous solvent containing 50 \% v/v acetonitrile. The kinetics of aminolysis of 26 in the presence of amine buffers at 0.3 M or 0.4 M ionic strength have been discussed in terms of the following reaction scheme 1:

\[
\begin{align*}
C + E & \xrightleftharpoons[k_0][k_1] B \\
& \xrightarrow{k_1[A]} C + D
\end{align*}
\]

Scheme 1

where A = free amine base, B = 26, C = 48, D = amide, E = acetic acid. In case of tertiary amine and amino alcohol, the final product gave 48 and acetic acid. In most cases, the plot of \(k_{obs}\) versus total amine buffer concentration gave straight line with ~ zero intercepts. The aminolysis of 26 under buffers of primary and secondary amines revealed a bronsted plot of \(\beta_{nac} = 0.91 \pm 0.20\).
ABSTRAK

Bab pertama, mengumpulkan maklumat-maklumat daripada rujukan berkenaan dengan sebatian amino alkohol, ester dan terbitannya, disamping kinetik dan mekanisma aminolisis ester. Turut membincangkan berkenaan kegunaan sebatian ini dalam bidang biologi, farmakologi, sintesis, industry dan kimia gunaan. Beberapa kaedah sintesis sebatian N-tertukar ganti amino alkohol dan ester seperti N,N- (dietilaminometil)benzil alkohol dan p-nitrophenil acetat dan N-tertukar ganti acetat turut dibincangkan.

Bab kedua menjelaskan secara terperinci langkah-langkah eksperimen untuk mensintesis sebatian dan pengenalpastian spektroskopi sebatian berikut: N,N- (dietilaminometil)benzil alkohol (35), N,N-dietilfthlamic asid (34), 2-((dietilamino)metal)benzil acetat (42), N-benzilacetamida (44) dan N,N-dietilacetamida (45).

Bab terakhir mengadungi keputusan hasil daripada aminolisis 26. Keputusan dibahagikan kepada tiga bahagian iaitu 1) amina primer, 2) amina sekunder, 3) amina tertiari dan 4) amino alkohol. Aminolisis 26 dengan amina primer dan sekunder memberikan amida dan 48 sebagai hasil akhir, manakala hidrolisis 26 dengan amina ketiga dan amino alkohol memberikan asid asetik dan 48. Aminolisis 26 dengan
beberapa siri amina seperti (metilamina, \(N,N\)-dimetilamina, \(N,N\)-dietilamina, benzilamina, \(N,N\)-metilbenzilamina, \(N,N\)-etilbenzilamina, \(N,N\)-dimetilbenzilamina dan \(N,N\)-(dietilaminometil)benzil alkohol) dijalankan didalam campuran pelarut akues yang mengandungi 50 \% v/v acetonitril. Kinetik bagi aminolisis 26 dengan kehadiran amina pada kepekatan 0.3 M atau 0.4 M dibincangkan dalam terma seperti skema 1:

\[
\begin{align*}
\text{C} + \text{E} & \quad \xrightarrow{k_0[\text{HO}^-]} \quad \text{B} \\
& \quad \xrightarrow{k_1[\text{A}]} \quad \text{C} + \text{D}
\end{align*}
\]

Skema 1

dimana A = amina, B = 26, C = 48, D = amida dan E = asid asetik. Dalam kebanyakan kes, plot \(k_{\text{obs}}\) melawan kepekatan amina memberikan graf garis lurus dengan pintasan menghampiri kosong. Tindak balas aminolisis 26 dalam kehadiran amina primer dan sekunder memberikan plot Bronsted dengan kecerunan \(\beta_{\text{nuc}} = 0.91 \pm 0.20\).
ACNOWLEDGEMENTS

The work presented in this these would not have been possible the help of a great number of people. Most of all, I want to express my gratitude to my supervisors, Associate Prof. Dr. Azhar Bin Ariffin and Prof. Mohammad Niyaz Khan for their help, encouragement, support and advice over the whole duration of this research. They always available when needed and willing to review my research work and schedule from time to time. I gratefully acknowledgement my indebtedness to my supervisors for many valuable and inspiring ideas as well as comments of the original manuscript of this thesis. A millions thanks to Dr. Azhar, for his kindness, the opportunities and trust he gave to me. Only Allah can pay for their helps.

Acknowledgement should be given to the Chemistry Department of University of Malaya, for providing me the opportunities totally utilizes the lab facilities. Thank also to all technical staff in the department including science officers and lab assistants for their kindness and help during my research. Also not forget to thank the staff members of the Chemistry Department and Faculty of Science for their cooperation. I also want to thank University of Malaya for their tutorship and the Vote F for their financial support. Last but not least, I am pleased to have all friends, my roommates, postgraduate student in Chemistry Department and my colleagues (Sim, Kak Dah, Emmy and Mr. Wadgeeh) who had helped and encouraged me to accomplish this research.

Finally, I am truly grateful to my beloved family members (Abe Uji, Ila, Amat, Pudin, Siti, my nieces and my nephews), especially my parents (Ma and Abah), for their support, love and faith on me. This work is dedicated to them.

Thank you so much
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEGDEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLES OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF COMPOUNDS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER 1 SYNTHESIS OF AMINO ALCOHOLS AND ESTERS

1. Introduction
 1.1 Amino Alcohol
 1.1.1 Importance of Amino Alcohols
 1.1.2 Methods of Synthesis of Amino Alcohol Derivatives
 1.1.2.1 Amino Alcohol from Epoxides
 1.1.2.2 Reaction of Grignard Reagent with Amino Carbonyl Compounds
 1.1.2.3 Amino Alcohol from Reduction of Carbonyl Groups
 1.2.2.4 Lithiation of Substituted Benzylamine
 1.2 Acetates
 1.2.1 Importance of Acetates
 1.2.2 Synthesis of p-Nitrophenyl Acetate
 1.2.2.1 Acylation
 1.2.2.2 Acetylation
 1.2.2.2.1 Acetylation Under Microwave
CHAPTER 2 MATERIALS AND EXPERIMENTAL DETAILS FOR SYNTHESIS

2. Experimental Details
 2.1 Materials
 2.2 General Procedures
 2.3 Experimental Details for Synthesis
 2.3.1 Synthesis of N,N-Diethylphthalamic Acid (34)
 2.3.2 Synthesis of N,N-(Diethylmethylamino)benzyl Alcohol (35) using LiAlH₄
 2.3.3 Synthesis of N,N-(Diethylmethylamino)benzyl Alcohol (35) using BH₃.SMe₂
 2.3.4 Synthesis of 2-((Diethylamino)methyl)benzyl Acetate (42)
 2.3.5 Synthesis N-Benzylacetamide (44)
 2.3.6 Synthesis N,N-Diethylacetamide (45)
 2.4 References

CHAPTER 3 KINETIC MEASUREMENTS AND PRODUCT CHARACTERIZATIONS

3.1 Introduction
 3.2 Kinetic Measurement
 3.2.1 Wavelength Determination for Kinetic Spectrophotometric Studies
3.2.1.1 Alkaline Hydrolysis of 26 in Mixed Aqueous-Organic Solvent 39

3.2.1.2 Acidic Hydrolysis of 26 in Mixed Aqueous-Organic Solvent 42

3.2.2 Experimental Details on Kinetic Measurements 45

3.3 Details Calculation 47

3.3.1 Simple First-Order Rate Constant 47

3.3.2 Rate Law of Aminolysis of 26 49

3.3.3 The Observed Rate Law 49

3.4 Product Characterizations 51

3.4.1 Experimental Details 51

3.4.1.1 Reverse-Phase High Performance Liquid Chromatography (RP-HPLC) 51

3.4.1.2 Materials 51

3.4.1.3 Standard Solutions 52

3.4.1.4 Chromatographic Conditions 52

3.4.1.5 Determination of Mobile Phase 53

3.4.1.6 Sample Preparations 53

3.4.2 Results and Discussions 54

3.4.2.1 Primary Amines 54

3.4.2.2 Secondary Amines 57

3.4.2.3 Tertiary Amine 59

3.4.2.4 Amino Alcohol 61

3.5 References 66

CHAPTER 4 AMINOLYSIS OF p-NITROPHENYL ACETATE 67

4.1 Introduction 68

4.2 Effects on Amine on the Cleavage of 26 70

4.3 Results 71

4.3.1 Effect of Primary Amines on the Cleavage of 26 71
4.3.2 Effect of Secondary Amines on the Cleavage of 26 \hspace{1cm} 80
4.3.3 Effect of Tertiary Amines on the Cleavage of 26 \hspace{1cm} 90
4.3.4 Effect of Amino Alcohol on the Cleavage of 26 \hspace{1cm} 93

4.4 Discussions \hspace{1cm} 95
4.4.1 Primary and Secondary Amines \hspace{1cm} 96
4.4.2 Tertiary Amines \hspace{1cm} 98
4.4.3 Amino Alcohol \hspace{1cm} 100
4.4.4 Bronsted Plots \hspace{1cm} 103

4.5 References \hspace{1cm} 109

CONCLUSION

APPENDICES

Appendix 1: Table A1 – A12

Appendix 2: 1H-NMR, 13C-NMR, Cosy and IR Spectrums.

ix
LIST OF TABLES

Table 1-1:	Summary of Synthesized Compounds N,N-Disubstituted phthalamic acid, N,N-disubstituted amino alcohol and N,N-disubstituted acetamide.	18
Table 3-1:	The Summary of the Data of Standard Compounds for Fig. 3-7.	55
Table 3-2:	The Summary of the Data of Reaction Mixtures for Fig. 3-8.	56
Table 3-3:	The Summary of the Data of Reaction Mixtures for Fig. 3-9.	58
Table 3-4:	The Summary of the Data of Reaction Mixtures for Fig. 3-10.	59
Table 3-5:	The Summary of the Data of Standard Compounds for Fig. 3-11.	60
Table 3-6:	The Summary of the Data of Reaction Mixtures for Fig. 3-12.	61
Table 3-7:	The Summary of the Data of Standard Compounds for Fig. 3-13.	62
Table 3-8:	The Summary of the Data of Reaction Mixtures for Fig. 3-14.	63
Table 3-9:	The Summary of the Data of Reaction Mixtures for Fig. 3-15.	64
Table 3-10:	The Summary of the Data of Reaction Mixtures for Fig. 3-16.	65
Table 4-1:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 49 Buffer at Different pH, μ = 0.4 M.a	73
Table 4-2:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 43 Buffer at Different pH, μ = 0.4 M.a	74
Table 4-3:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 43 Buffer at Different pH, μ = 0.3 M.a	75
Table 4-4:	Values of Kinetic Parameters A1, A1$_{cal}$ and [OH$^-$] for Aminolysis of 26 in the Presence of 49 and 43 Buffers at Different pH.a	79
Table 4-5:	Values of Rate Constant k_n and k_{OH^-} for Aminolysis of 26 in the Presence of Primary Amines.a	79
Table 4-6:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 50 Buffer at Different pH, μ = 0.4 M.a	81
Table 4-7:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 37 Buffer at Different pH, μ = 0.4 M.a	82
Table 4-8: Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 51 Buffer at Different pH, $\mu = 0.4$ M a 83

Table 4-9: Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 52 Buffer at Different pH, $\mu = 0.4$ M a 84

Table 4-10: Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 51 Buffer at Different pH, $\mu = 0.3$ M a 85

Table 4-11: Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 52 Buffer at Different pH, $\mu = 0.3$ M a 86

Table 4-12: Values of Kinetic Parameters A1, A1$_{\text{calcd}}$ and [OH$^-$] for Aminolysis of 26 in the Presence of 50, 37, 51 and 52 Buffers at Different pH.a 89

Table 4-13: Values of Rate Constant k_n and k_{OH^-} for Aminolysis of 26 in the Presence of Secondary Amines.a 90

Table 4-14: Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 53 Buffer at Different pH, $\mu = 0.4$ M a 92

Table 4-15: Values of Kinetic Parameters A1 for Aminolysis of 26 in the Presence of 53 Buffer at Different pH.a 92

Table 4-16: Values of Rate Constant, k_n for Aminolysis of 26 in the Presence of Tertiary Amine.a 93

Table 4-17: Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the Presence of 35 Buffer at Different pH, $\mu = 0.4$. a 94

Table 4-18: Values of Kinetic Parameters A1 for Aminolysis of 26 in the Presence of 35 Buffers at Different pH.a 95

Table 4-19: Values of Rate Constant, k_n for Aminolysis of 26 in the Presence of Amino Alcohol.a 95

Table 4-20: Values of pK$_a$, k_n, and k_{calcd} – Bronsted Plot of Aminolysis of 26 by Amines. 105

Table 4-21: Values of pK$_a$, k_{OH^-}, and $k_{\text{OH}^-\text{calcd}}$ – Bronsted plot of specific base – catalyzed aminolysis of 26. 108
Table A-1: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of CH₃NH₂ buffer.¹

Table A-2: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of C₆H₅CH₂NH₂ buffer.¹

Table A-3: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of C₆H₅CH₂NH₂ buffer.¹

Table A-4: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of (CH₃)₂NH²

Table A-5: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of (CH₃)₂NH buffer.²

Table A-6: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of C₆H₅CH₂NHCH₃ buffer.³

Table A-7: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of C₆H₅CH₂NHCH₃ buffer.³

Table A-8: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of C₆H₅CH₂NCH₂CH₃ buffer.³

Table A-9: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of C₆H₅CH₂NCH₂CH₃ buffer.³

Table A-10: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of C₆H₅CH₂N(CH₃)₂ buffer.³
Table A-11: Values of Kinetic Parameter k_{obs}, C_{app} and A_0 Calculated from Eq. (3-13) for the Cleavage of 26 in the Presence of o-HOCH$_2$C$_6$H$_5$CH$_2$N(CH$_3$)$_2$ buffer.a

Table A-12: Values of pH and $[\text{NaOH}]_T$/M for The Plot of pH Versus $\ln [\text{NaOH}]_T$/M
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1:</td>
<td>Mechanism of reduction by LiAlH<sub>4</sub>.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1-2:</td>
<td>Mechanism of acetylation.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3-1:</td>
<td>UV spectra of alkaline hydrolysis of 26 at 30°C at different reaction time (t) in aqueous solvent containing 6 x 10<sup>-5</sup> M 26, 1 x 10<sup>-3</sup> M NaOH and 2 % CH<sub>3</sub>CN</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3-2:</td>
<td>UV spectra of alkaline hydrolysis of 26 at 30°C at different reaction time (t) in aqueous solvent containing 6 x 10<sup>-5</sup> M 26, 1 x 10<sup>-3</sup> M NaOH and 50 % CH<sub>3</sub>CN</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3-3:</td>
<td>UV spectra of alkaline hydrolysis of 26 at 30°C at different reaction time (t) in aqueous solvent containing 6 x 10<sup>-5</sup> M 26, 1 x 10<sup>-3</sup> M NaOH and 80 % CH<sub>3</sub>CN.</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3-4:</td>
<td>UV spectra of acid hydrolysis of 26 at 30°C at different reaction time (t) in aqueous solvent containing 6 x 10<sup>-5</sup> M 26, 1 x 10<sup>-3</sup> M HCl and 2 % CH<sub>3</sub>CN.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3-5:</td>
<td>UV spectra of acid hydrolysis of 26 at 30°C at different reaction time (t) in aqueous solvent containing 6 x 10<sup>-5</sup> M 26, 1 x 10<sup>-3</sup> M HCl and 50 % CH<sub>3</sub>CN.</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3-6:</td>
<td>UV spectra of acid hydrolysis of 26 at 30°C at different reaction time (t) in aqueous solvent containing 6 x 10<sup>-5</sup> M 26, 1 x 10<sup>-3</sup> M HCl and 80 % CH<sub>3</sub>CN.</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3-7:</td>
<td>HPLC chromatogram: 1 = NaBr, µ = 0.4 M, 2 = 48 (0.001 M), 3 = 44 (0.001 M), 4 = 43 (0.10 M) and 5 = 26 (0.001 M). Eluent: Isopropanol/water (35 %: 65 % v/v), column temperature = room temperature injected volume = 20 µl.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3-8:</td>
<td>HPLC chromatogram shows the peaks of reaction mixture at, t = 0 (A) and t = ∞ (B). C is the chromatogram of standard product, 44. Eluent: Isopropanol/water (35 %: 65 % v/v), column temperature = room</td>
<td></td>
</tr>
</tbody>
</table>
temperature, injected volume = 20 µl.

Figure 3-9: HPLC chromatogram: 1 = 45 (0.001M), 2 = 48 (0.001 M), 3 = 37 (0.2 M) and 4 = 26 (0.001 M). Eluent: Isopropanol/water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 3-10: HPLC chromatogram shows the peaks of reaction mixture at, t = 0 (C) and t = ∞ (B). A is the chromatogram of standard product, 45. Eluent: Isopropanol/water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 3-11: HPLC chromatogram: 1 = NaBr, µ = 0.4 M, 2 = 48 (0.001 M), 3 = 53 (0.10 M), 4 = 26 (0.001 M). Eluent: Isopropanol : water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 3-12: HPLC chromatogram shows the peaks of reaction mixture at, t = 0 (A) and t = ∞ (B). Eluent: Isopropanol : water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 3-13: HPLC chromatogram : 1 = NaBr, µ = 0.4 M, 2 = 48 (0.001 M), 3 & 4 = 35 (0.08 M), 5 = 26 (0.001 M), 6 = 42 (0.001 M) and 7 = 29 (0.001 M). Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 3-14: HPLC chromatogram shows the peaks of reaction mixture at, t = 0 (A) and t = ∞ (B) which represented by A and B respectively. Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 3-15: HPLC chromatogram shows the peaks of reaction mixture at, t = 4260 s (~ t½). Chromatogram A shows pure reaction mixtures while chromatogram B shows the mixture of 0.1 ml of 42 (0.001 M) and 0.1 ml reaction mixture. Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 3-16: HPLC chromatogram shows the peaks of reaction mixture at, t = ∞.
Chromatogram A shows pure reaction mixtures while chromatogram B shows the mixture of 0.1 ml of 73 (0.001 M) and 0.1 ml reaction mixture. Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 µl.

Figure 4-1: Plot of Abs versus time, t, the aminolysis of 6 x 10^{-5} M 26 at 0.02 M [CH$_3$NH$_2$]$_T$, 50 % f.b, 0.4 M total ionic strength and T = 30° C. The solid line is drawn through the calculated data points using Eq. (3-13).

Figure 4-2: Plots of pseudo-first order rate constant k$_{obs}$ versus [Am]$_T$ at different pH for aminolysis of 26 with [Am]$_T$ = [49]$_T$, µ = 0.4 M at pH 9.80 (■), 10.15 (▲), 10.35 (○), and 10.56 (□) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-3: Plots of pseudo-first order rate constant k$_{obs}$ versus [Am]$_T$ at different pH for aminolysis of 26 with [Am]$_T$ = [43]$_T$, µ = 0.4 M at pH 8.28 (■), 8.51 (▲), 8.72 (○), 8.91 (□) and 9.31 (Δ) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-4: Plots of pseudo-first order rate constant k$_{obs}$ versus [Am]$_T$ at different pH for aminolysis of 26 with [Am]$_T$ = [43]$_T$, µ = 0.3 M at pH 8.37 (■), 8.46 (▲), 8.65 (○), 8.86 (□) and 9.25 (Δ) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-5: Plot of pH versus ln [NaOH] for determination of [OH$^-$] at 50 % CH$_3$CN : 50 % H$_2$O v/v, µ = 0.3 M and T = 30° C. The solid line is drawn using empirical Eq. (4-6).

Figure 4-6: Plot of pH versus ln [NaOH] for determination of [OH$^-$] at 50 % CH$_3$CN : 50 % H$_2$O v/v, µ = 0.4 M and T = 30° C. The solid line is drawn using
empirical Eq. (4-7).

Figure 4-7: Plots of k_b/f_b versus $[\text{OH}^-]$ for aminolysis of 26 in the presence of primary amines: 49 (\blacktriangle), 43 (\triangle) and 43 (\bigodot) respectively. The solid line are drawn through the calculated data points using Eq. (4-5) as described in text. $^a \mu = 0.4 \text{ M}$, $^b \mu = 0.3 \text{ M}$.

Figure 4-8: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_T$ at different pH for aminolysis of 26 with $[\text{Am}]_T = [50]_T$ is $= 0.4$ at pH 10.05 (■), 10.20 (\blacktriangle), 10.29 (\bigodot), 10.32 (□) and 10.66 (Δ) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-9: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_T$ at different pH for aminolysis of 26 with $[\text{Am}]_T = [37]_T$ is $= 0.4$ at pH 10.34 (■), 10.44 (\blacktriangle), 10.77 (□) and 11.10 (\bigodot) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-10: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_T$ at different pH for aminolysis of 26 with $[\text{Am}]_T = [51]_T$ is $= 0.4$ at pH 8.64 (■), 8.79 (\blacktriangle), 9.00 (\bigodot), 9.22 (□) and 9.63 (Δ) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-11: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_T$ at different pH for aminolysis of 26 with $[\text{Am}]_T = [52]_T$ is $= 0.4$ at pH 8.72 (\blacktriangle), 8.81 (\bigodot), 9.11 (□), 9.31 (\bigodot) and 9.71 (Δ) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-12: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_T$ at different pH for aminolysis of 26 with $[\text{Am}]_T = [51]_T$ is $= 0.3$ at pH 8.60 (■), 8.71 (\blacktriangle), 8.97 (\bigodot), 9.16 (□) and 9.60 (Δ) respectively. The solid line are...
drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-13: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_{\text{T}}$ at different pH for aminolysis of 26 with $[\text{Am}]_{\text{T}} = [52]_{\text{T}}$ is= 0.3 at pH 8.65 (■), 8.77 (▲), 8.97 (●), 9.21 (□) and 9.61 (△) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.

Figure 4-14: Plots of k_b/f_b (A1) versus $[\text{OH}^-]$ for aminolysis of 26 in the presence of secondary amines: (50 (▲)°), 51 (○)°, 52 (□)°, 51 (●)°, and 52 (■)° respectively. The solid line are drawn through the calculated data points using Eq. (4-5) as described in text. $^a = \mu = 0.4$ M, $^b = \mu = 0.3$ M.

Figure 4-15: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_{\text{T}}$ at different pH for aminolysis of 26 with $[\text{Am}]_{\text{T}} = [53]_{\text{T}}$ at pH 8.07 (♦), 8.20 (△), 8.16 (○), 8.34 (▲), 8.35 (●), 8.45 (×), 8.76 (●) and 8.65 (◇) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text. $\mu = 0.4$ M.

Figure 4-16: Plots of pseudo-first order rate constant k_{obs} versus $[\text{Am}]_{\text{T}}$ at different pH for aminolysis of 26 with $[\text{Am}]_{\text{T}} = [35]_{\text{T}}$ at pH 7.91 (▲), 7.99 (◇), 8.21 (△), 8.22 (●), 8.27 (○), 8.56 (□), 8.68 (●) and 8.93 (+), and 8.85 (★) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text. $\mu = 0.4$ M.

Figure 4-17: The dependence of the nucleophilic second-order rate constant (k_a) for the reaction of 26 with amines nucleophiles on the pK_a of the conjugate acid of the amines at 30°C. The solid line is drawn through the least-squares calculated points using Bronsted equation with slope (β_{nuc}) of 0.91 ± 0.20 and intercept (C) -9.12 ± 1.8 M$^{-1}$s$^{-1}$. In the Bronsted plot : Methylamine (○)°, N-benzylamine (Δ), N-benzylamine (▲)°, N,N'-dimethylamine (●)°, N,N'-diethylamine (★)°, N-methylbenzylamine (◇)°,
N-methylbenzylamine (♦), N-ethylbenzylamine (□), N-ethylbenzylamine (■), N,N-dimethylbenzylamine (×) and N,N-(diethylaminomethyl)benzyl alcohol (+). a µ = 0.4 M, b µ = 0.3

Figure 4-17: The dependence of the third-order rate constant (k$_{OH}$) for the reaction of 26 with amines nucleophiles on the pK$_a$ of the conjugate acid of the amines at 30°C. The solid line is drawn through the least-squares calculated points using Bronsted equation with slope (β_{nuc}) of 0.88 ± 0.20 and intercept (C) -5.40 ± 1.9 M$^{-1}$s$^{-1}$. In the Bronsted plot:

Methylamine (○), N-benzylamine (□), N-benzylamine (Δ), N,N-dimethylamine (★), N,N-methylbenzylamine (●), N,N-methylbenzylamine (◊), N,N-ethylbenzylamine (▲) a µ = 0.4 M, b µ = 0.3
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs</td>
<td>absorbance</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic</td>
</tr>
<tr>
<td>A_{cald}</td>
<td>calculated absorbance</td>
</tr>
<tr>
<td>A_{obs}</td>
<td>observed absorbance</td>
</tr>
<tr>
<td>[Am]$_T$</td>
<td>total amine buffer concentrations</td>
</tr>
<tr>
<td>A1</td>
<td>k_b/f_b</td>
</tr>
<tr>
<td>b.p.</td>
<td>boiling point</td>
</tr>
<tr>
<td>CDCl$_3$</td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>CH$_3$NH$_2$</td>
<td>methylamine</td>
</tr>
<tr>
<td>C$_6$H$_5$CH$_2$NH$_2$</td>
<td>benzylamine</td>
</tr>
<tr>
<td>(d)</td>
<td>doublet</td>
</tr>
<tr>
<td>Eq.</td>
<td>equation</td>
</tr>
<tr>
<td>f_b</td>
<td>free base</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>water</td>
</tr>
<tr>
<td>IGA</td>
<td>intramolecular general acid</td>
</tr>
<tr>
<td>IGB</td>
<td>intramolecular general acid</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>K_a</td>
<td>ionization constant</td>
</tr>
<tr>
<td>k_n</td>
<td>second – order rate constant for nucleophilic</td>
</tr>
<tr>
<td>k_{OH^+}</td>
<td>third – order rate constant for specific base – catalyzed</td>
</tr>
<tr>
<td>k_b</td>
<td>second – order rate constant</td>
</tr>
<tr>
<td>k_o</td>
<td>uncatalyzed catalysis</td>
</tr>
<tr>
<td>M</td>
<td>mole per liter</td>
</tr>
</tbody>
</table>
mp. melting point
m minute
(m) multiplet
Mw molecular weight
NMR nuclear magnetic resonance
NaOH sodium hydroxide
NaBr sodium bromide
(q) quartet
ref. reference
Rf retention rime
rt room temperature
s second
(s) singlet
t time
(t) triplet
T temperature
THF tetrahydrofuran
TLC thin layer chromatography
UV ultraviolet
vis visible
v/v volume per volume
λ wavelength
β nuc Bronsted slope
μ ionic strength
% percentage
[] concentration
[Am] T total amine buffer concentration
[Buf] T total buffer concentration
LIST OF COMPOUNDS

1. \(R_1 R_2 \text{C}_\text{OH} \)
 \(R_3 \text{R}_4 \)

2. \(R_2 R_1 \text{N}_\text{OH} \)

3. \(R_3 R_1 \text{N}_\text{OH} \)

4. \(R_4 \text{R}_4 \)

5. \(\text{C}_\text{OH} \)
 \(R \)

6. \(\text{C}_\text{OH} \)
 \(\text{NH}_2 \)

7. \(\text{C}_\text{OH} \)
 \(\text{NH}_2 \)

8. \(\text{C}_\text{OH} \)
 \(\text{NH}_2 \)

9. \(\text{C}_\text{OH} \)
 \(\text{NH}_{\text{BOC}} \)

10. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

11. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

12. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

13. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

14. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

15. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

16. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

17. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

18. \(\text{C}_\text{OH} \)
 \(\text{O} \text{O} \)

R = \(-\text{CH}_2\text{CH}_2\text{OH}, -(\text{CH}_2)_2\text{OH}, -(\text{CH}_2)_4\text{OH} \)