KINETICS AND MECHANISM OF AMINOLYSIS OF *p*-NITROPHENYL ACETATE IN MIXED WATER-ACETONITRILE SOLVENTS

NOR SALMI BINTI ABDULLAH

SUBMISSION OF DISSERTATION FOR THE FULFILMENT OF THE DEGREE OF MASTER OF SCIENCE

CHEMISTRY DEPARTMENT FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2009

KINETICS AND MECHANISM OF AMINOLYSIS OF *p*-NITROPHENYL ACETATE IN MIXED WATER-ACETONITRILE SOLVENTS

NOR SALMI BINTI ABDULLAH

CHEMISTRY DEPARTMENT FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

MARCH 2009

ABSTRACT

First chapter deals with the literature review of amino alcohols and their derivatives, as well as kinetics and mechanism of aminolysis of esters. The uses of these compounds in biological, pharmacological, synthesis, industries and applied chemistry were discussed briefly. The literature search on some available methods for the synthesis of amine derivatives and esters such as N,N-(diethylaminomethyl)benzyl alcohol (**35**) and *p*-nitrophenyl acetate (**26**) is described.

Chapter two reports the experimental details on the syntheses and characterization of N,N-(diethylaminomethyl)benzyl alcohol (**35**), N,N-diethylphthalamic acid (**34**), 2-((diethylamino)methyl)benzyl acetate (**42**), N-benzylacetamide (**44**) and N,N-diethylacetamide (**45**).

Chapter three provides a brief introduction of chemical kinetics and common methods of carrying out the kinetic studies. General procedures in determining suitable wavelength (λ) for kinetic studies have been discussed. Some experimental details of product characterization using Reverse-phase High Performance Liquid Chromatography have been also described. The results have been divided into four parts according to the types of amines.

Final chapter contains the results of aminolysis of **26**. These results are classified into four major parts, 1) primary amines, 2) secondary amines, 3) tertiary amines and 4) amino alcohols (tertiary amines). The aminolysis of **26** with primary and secondary amines gave an amide and *p*-nitrophenolate ion (**48**), while the hydrolysis of **26** with tertiary amines and amino alcohol gave acetic acid and **48**. The aminolysis of **26** with a series of amines (methylamine, *N*,*N*-dimethylamine, *N*,*N*-diethylamine, *N*,*N*-diethylamine, *N*,*N*-diethylamine, *N*,*N*-diethylamine, *N*,*N*-methylbenzylamine, *N*,*N*-ethylbenzylamine, *N*,*N*-

i

dimethylbenzylamine and N,N-(diethylaminomethyl)benzyl alcohol) have been studied in mixed aqueous solvent containing 50 % v/v acetonitrile. The kinetics of aminolysis of **26** in the presence of amine buffers at 0.3 M or 0.4 M ionic strength have been discussed in terms of the following reaction scheme 1:

$$C + E \stackrel{k_0[HO^-]}{\longleftarrow} B \stackrel{k_1[A]}{\longrightarrow} C + D$$

Scheme 1

where A = free amine base, B = 26, C = 48, D = amide, E = acetic acid. In case of tertiary amine and amino alcohol, the final product gave 48 and acetic acid. In most cases, the plot of k_{obs} versus total amine buffer concentration gave straight line with ~ zero intercepts. The aminolysis of 26 under buffers of primary and secondary amines revealed a bronsted plot of $\beta_{nuc} = 0.91 \pm 0.20$.

ABSTRAK

Bab pertama, mengumpulkan maklumat-maklumat daripada rujukan berkenaan dengan sebatian amino alkohol, ester dan terbitannya, disamping kinetik dan mekanisma aminolisis ester. Turut membincangkan berkenaan kegunaan sebatian ini dalam bidang biologi, farmakologi, sintesis, industry dan kimia gunaan. Beberapa kaedah sintesis sebatian *N*-tertukar ganti amino alkohol dan ester seperti *N*,*N*-(dietilaminometil)benzil alkohol dan *p*-nitrophenil acetat dan *N*-tertukar ganti acetat turut dibincangkan.

Bab kedua menjelaskan secara terperinci langkah-langkah eksperimen untuk mensintesis sebatian dan pengenalpastian spektroskopi sebatian berikut: *N,N*-(dietilaminometil)benzil alkohol (**35**), *N,N*-dietilfthlamic asid (**34**), 2-((dietilamino)metal)benzil acetat (**42**), *N*-benzilacetamida (**44**) dan *N,N*-dietilacetamida (**45**).

Bab ketiga mengandungi pengenalan ringkas berkenaan kimia kinetik dan kaedah-kaedah biasa yang digunakan semasa menjalankan kajian kinetik. Membincangkan secara terperinci kaedah eksperimen untuk penentuan panjang gelomgbang (λ). Penjelasan berkenaan eksperimen penentuan hasil tindak balas (produk) mengunakan Fasa-Terbalik Kromatografi Cecair Prestasi Tinggi. Keputusan dibahagikan kepada empat bahagian mengikut jenis-jenis amina.

Bab terakhir mengadungi keputusan hasil daripada aminolisis 26. Keputusan dibahagikan kepada tiga bahagian iaitu 1) amina primer, 2) amina sekunder, 3) amina tertiar dan 4) amino alkohol. Aminolisis 26 dengan amina primer dan sekunder memberikan amida dan 48 sebagai hasil akhir, manakala hidrolisis 26 dengan amina ketiga dan amino alkohol memberikan asid asetik dan 48. Aminolisis 26 dengan

iii

beberapa siri amina seperti (metilamina, N,N-dimetilamina, N,N-dietilamina, benzilamina, N,N-metilbenzilamina, N,N-etilbenzilamina, N,N-dimetilbenzilamina dan N,N-(dietilaminometil)benzil alkohol) dijalankan didalam campuran pelarut akues yang mengandungi 50 % v/v acetonitril. Kinetik bagi aminolisis **26** dengan kehadiran amina pada kepekatan 0.3 M atau 0.4 M dibincangkan dalam terma seperti skema 1:

$$C + E \stackrel{k_0[HO^-]}{\longleftarrow} B \stackrel{k_1[A]}{\longrightarrow} C + D$$

Skema 1

dimana A = amina, B = **26**, C = **48**, D = amida dan E = asid asetik. Dalam kebanyakkan kes, plot k_{obs} melawan kepekatan amina memberikan graf garis lurus dengan pintasan menghampiri kosong. Tindak balas aminolisis **26** dalam kehadiran amina primer dan sekunder memberikan plot Bronsted dengan kecerunan $\beta_{nuc} = 0.91 \pm 0.20$.

ACNOWLEDGEMENTS

The work presented in this these would not have been possible the help of a great number of people. Most of all, I want to express my gratitude to my supervisors, Associate Prof. Dr. Azhar Bin Ariffin and Prof. Mohammad Niyaz Khan for their help, encouragement, support and advice over the whole duration of this research. They always available when needed and willing to review my research work and schedule from time to time. I gratefully acknowledgement my indebtedness to my supervisors for many valuable and inspiring ideas as well as comments of the original manuscript of this thesis. A millions thanks to Dr. Azhar, for his kindness, the opportunities and trust he gave to me. Only Allah can pay for their helps.

Acknowledgement should be given to the Chemistry Department of University of Malaya, for providing me the opportunities totally utilizes the lab facilities. Thank also to all technical staff in the department including science officers and lab assistants for their kindness and help during my research. Also not forget to thank the staff members of the Chemistry Department and Faculty of Science for their cooperation. I also want to thank University of Malaya for their tutorship and the Vote F for their financial support. Last but not least, I am pleased to have all friends, my roommates, postgraduate student in Chemistry Department and my colleagues (Sim, Kak Dah, Emmy and Mr. Wadgeeh) who had helped and encouraged me to accomplish this research.

Finally, I am truly grateful to my beloved family members (Abe Uji, Ila, Amat, Pudin, Siti, my nieces and my nephews), especially my parents (Ma and Abah), for their support, love and faith on me. This work is dedicated to them.

Thank you so much

TABLES OF CONTENTS

				РА	GE
ABSTRACT					i
ABSTRAK					iv
ACKNOWL	EGDEN	MENT			v
TABLES OF	CONT	TENTS			vi
LIST OF TA	BLES				xii
LIST OF FIC	GURES	5			xvii
LIST OF SY	MBOL	S AND	ABBREV	VIATIONS	XXV
LIST OF CO	MPOU	NDS		XX	viii
CHAPTER 1	SYN'	THESI	S OF AM	INO ALCOHOLS AND	
	EST	ERS			1
1.	Introd	uction			2
	1.1	Amino	o Alcohol		2
		1.1.1	Importan	ace of Amino Alcohols	2
		1.1.2	Methods	of Synthesis of Amino Alcohol Derivatives	7
			1.1.2.1	Amino Alcohol from Epoxides	7
			1.1.2.2	Reaction of Grignard Reagent with Amino	
				Carbonyl Compounds	8
			1.1.2.3	Amino Alcohol from Reduction of	
				Carbonyl Groups	8
			1.2.2.4	Lithiation of Substituted Benzylamine	9
	1.2	Acetat	es		10
		1.2.1	Importar	ace of Acetates	10
		1.2.2	Synthesi	s of <i>p</i> -Nitrophenyl Acetate	11
			1.2.2.1	Acylation	12
			1.2.2.2	Acetylation	12

1.2.2.2.1 Acetylation Under Microwave

				Irradiation	12
			1.2.2.2.2	Catalytic Acetylation of Alc	cohol
				with Zeolite H-FER Under	
				Solventless Condition.	13
	1.3	Resul	ts and Discussions		13
	1.4	Refer	ences		20
CHAPTER	2 MA'	TERIA	LS AND EXPERIME	ENTAL DETAILS FOR	
	SNY	THES	IS		25
2.	Expe	rimental	Details		26
	2.1	Mater	ials		26
	2.2	Gener	al Procedures		27
	2.3	Exper	imental Details for Sy	nthesis	29
		2.3.1	Synthesis of N,N-Die	ethylphthalamic Acid (34)	29
		2.3.2	Synthesis of <i>N</i> , <i>N</i> -(D	iethylmethylamino)benzyl Alo	cohol
			(35) using LiAlH ₄		30
		2.3.3	Synthesis of <i>N</i> , <i>N</i> -(D	iethylmethylamino)benzyl Alo	cohol
			(35) using BH ₃ .SMe	2	32
		2.3.4	Synthesis of 2-((Diet	thylamino)methyl)benzyl Ace	tate
			(42)		33
		2.3.5	Synthesis N-Benzyla	acetamide (44)	34
		2.3.6	Synthesis N,N-Dieth	ylacetamide (45)	35
	2.4	Refer	ences		36
CHAPTER	3 KIN	ETIC N	MEASUREMENTS A	AND PRODUCT	
	CH	ARACI	TERIZATIONS		37
	3.1	Introd	uction		38
	3.2	Kinet	c Measurement		39
		3.2.1	Wavelength Determine	ination for Kinetic	
			Spectrophotometric	Studies	39

vii

			3.2.1.1	Alkaline Hydrolysis of 26 in Mixed Aqueous	8-
				Organic Solvent	39
			3.2.1.2	Acidic Hydrolysis of 26 in Mixed Aqueous-	
				Organic Solvent	42
		3.2.2	Experime	ental Details on Kinetic Measurements	45
	3.3	Details	s Calculati	on	47
		3.3.1	Simple F	irst-Order Rate Constant	47
		3.3.2	Rate Law	v of Aminolysis of 26	49
		3.3.3	The Obse	erved Rate Law	49
	3.4	Produc	et Characte	erizations	51
		3.4.1	Experime	ental Details	51
			3.4.1.1	Reverse-Phase High Performance Liquid	
				Chromatography (RP-HPLC)	51
			3.4.1.2	Materials	51
			3.4.1.3	Standard Solutions	52
			3.4.1.4	Chromatographic Conditions	52
			3.4.1.5	Determination of Mobile Phase	53
			3.4.1.6	Sample Preparations	53
		3.4.2	Results a	nd Discussions	54
			3.4.2.1	Primary Amines	54
			3.4.2.2	Secondary Amines	57
			3.4.2.3	Tertiary Amine	59
			3.4.2.4	Amino Alcohol	61
	3.5	Refere	nces		66
CHAPTER 4	AMI	NOLYS	SIS OF <i>p</i> -	NITROPHENYL ACETATE	67
	4.1	Introdu	uction		68
	4.2	Effects	s on Amin	e on the Cleavage of 26	70
	4.3	Result	s		71
		4.3.1	Effect of	Primary Amines on the Cleavage of 26	71

	4.3.2	Effect of Secondary Amines on the Cleavage of 26	80
	4.3.3	Effect of Tertiary Amines on the Cleavage of 26	90
	4.3.4	Effect of Amino Alcohol on the Cleavage of 26	93
4.4	Discu	ssions	95
	4.4.1	Primary and Secondary Amines	96
	4.4.2	Tertiary Amines	98
	4.4.3	Amino Alcohol	100
	4.4.4	Bronsted Plots	103
4.5	Refere	ences	109
CONCLUSION			112
APPENDICES			113
Apper	ndix 1:7	Table A1 – A12	114
Apper	ndix 2: 1	IH-NMR, 13C-NMR, Cosy and IR Spectrums.	133

LIST OF TABLES

		IGE
Table 1-1:	Summary of Synthesized Compounds N,N-Disubstituted phthalamic	
	acid, N,N-disubstituted amino alcohol and N,N-disubstituted	
	acetamide.	18
Table 3-1:	The Summary of the Data of Standard Compounds for Fig. 3-7.	55
Table 3-2 :	The Summary of the Data of Reaction Mixtures for Fig. 3-8.	56
Table 3-3:	The Summary of the Data of Reaction Mixtures for Fig. 3-9.	58
Table 3-4:	The Summary of the Data of Reaction Mixtures for Fig. 3-10.	59
Table 3-5:	The Summary of the Data of Standard Compounds for Fig. 3-11.	60
Table 3-6:	The Summary of the Data of Reaction Mixtures for Fig. 3-12.	61
Table 3-7:	The Summary of the Data of Standard Compounds for Fig. 3-13.	62
Table 3-8:	The Summary of the Data of Reaction Mixtures for Fig. 3-14.	63
Table 3-9:	The Summary of the Data of Reaction Mixtures for Fig. 3-15.	64
Table 3-10 :	The Summary of the Data of Reaction Mixtures for Fig. 3-16.	65
Table 4-1:	Values of Kinetic Parameters k_{o} and k_{b} for Aminolysis of $\boldsymbol{26}$ in the	
	Presence of 49 Buffer at Different pH, $\mu = 0.4$ M. ^{<i>a</i>}	73
Table 4-2:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the	
	Presence of 43 Buffer at Different pH, $\mu = 0.4$ M. ^{<i>a</i>}	74
Table 4-3:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the	
	Presence of 43 Buffer at Different pH, $\mu = 0.3 \text{ M.}^{a}$	75
Table 4-4:	Values of Kinetic Parameters A1, A1 _{cald} and [OH ⁻] for Aminolysis of	f 26
	in the Presence of 49 and 43 Buffers at Different pH. ^{<i>a</i>}	79
Table 4-5:	Values of Rate Constant k_n and k_{OH} , for Aminolysis of 26 in the	
	Presence of Primary Amines. ^{<i>a</i>}	79
Table 4-6:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the	
	Presence of 50 Buffer at Different pH, $\mu = 0.4$ M ^{<i>a</i>}	81
Table 4-7:	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the	
	Presence of 37 Buffer at Different pH, $\mu = 0.4$ M ^{<i>a</i>}	82

PAGE

Table 4-8:	Values of Kinetic Parameters $k_{\rm o}$ and $k_{\rm b}$ for Aminolysis of ${\bf 26}$ in the	
	Presence of 51 Buffer at Different pH, $\mu = 0.4$ M ^{<i>a</i>}	83
Table 4-9:	Values of Kinetic Parameters k_{o} and k_{b} for Aminolysis of $\boldsymbol{26}$ in the	
	Presence of 52 Buffer at Different pH, $\mu = 0.4$ M ^{<i>a</i>}	84
Table 4-10 :	Values of Kinetic Parameters k_{o} and k_{b} for Aminolysis of $\boldsymbol{26}$ in the	
	Presence of 51 Buffer at Different pH, $\mu = 0.3$ M ^{<i>a</i>}	85
Table 4-11 :	Values of Kinetic Parameters k_{o} and k_{b} for Aminolysis of $\boldsymbol{26}$ in the	
	Presence of 52 Buffer at Different pH, $\mu = 0.3$ M ^{<i>a</i>}	86
Table 4-12 :	Values of Kinetic Parameters A1, A1 _{cald} and [OH ⁻] for Aminolysis of	f
	26 in the Presence of 50 , 37 , 51 and 52 Buffers at Different pH. ^{<i>a</i>}	89
Table 4-13 :	Values of Rate Constant k_n and $k_{OH^{\mbox{\tiny o}}}$ for Aminolysis of ${\bf 26}$ in the	
	Presence of Secondary Amines. ^a	90
Table 4-14 :	Values of Kinetic Parameters k_{o} and k_{b} for Aminolysis of $\boldsymbol{26}$ in the	
	Presence of 53 Buffer at Different pH, $\mu = 0.4$ M ^{<i>a</i>}	92
Table 4-15 :	Values of Kinetic Parameters A1 for Aminolysis of 26 in the Presence	ce
	of 53 Buffer at Different pH. ^{<i>a</i>}	92
Table 4-16 :	Values of Rate Constant, k_n for Aminolysis of 26 in the Presence of	
	Tertiary Amine. ^{<i>a</i>}	93
Table 4-17 :	Values of Kinetic Parameters k_o and k_b for Aminolysis of 26 in the	
	Presence of 35 Buffer at Different pH, $\mu = 0.4$ M. ^{<i>a</i>}	94
Table 4-18 :	Values of Kinetic Parameters A1 for Aminolysis of 26 in the Presence	ce
	of 35 Buffers at Different pH. ^{<i>a</i>}	95
Table 4-19 :	Values of Rate Constant, k_n for Aminolysis of 26 in the Presence of	
	Amino Alcohol. ^{<i>a</i>}	95
Table 4-20 :	Values of pK_a , k_n , and k_{ncald} – Bronsted Plot of Aminolysis of 26 by	
	Amines.	105
Table 4-21 :	Values of pK_a , k_{OH} , and $k_{OH'cold}$ – Bronsted plot of specific base –	
	catalyzed aminolysis of 26 .	108
	- ·	

Table A-1:	Values of Kinetic Parameter $k_{obs}, \varepsilon_{app}$ and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of CH_3NH_2 buffer. ^a	114
Table A-2:	Values of Kinetic Parameter k_{obs} , C_{app} and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $C_6H_5CH_2NH_2$	
	buffer. ^a	115
Table A-3:	Values of Kinetic Parameter k_{obs} , C_{app} and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $C_6H_5CH_2NH_2$	
	buffer. ^a	117
Table A-4:	Values of Kinetic Parameter $k_{\text{obs}},$ C_{app} and A_{o} Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $(CH_3)_2NH_2$	
	buffer. ^a	118
Table A-5:	Values of Kinetic Parameter $k_{obs}, \varepsilon_{app}$ and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $(CH_3CH_2)_2NH$	
	buffer. ^a	120
Table A-6:	Values of Kinetic Parameter k_{obs} , ε_{app} and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $C_6H_5CH_2NHCH_3$	
	buffer. ^a	121
Table A-7:	Values of Kinetic Parameter $k_{obs}, \varepsilon_{app}$ and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $C_6H_5CH_2NHCH_3$	
	buffer. ^a	122
Table A-8:	Values of Kinetic Parameter $k_{obs}, \varepsilon_{app}$ and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $C_6H_5CH_2NCH_2CH_3$	
	buffer. ^a	124
Table A-9:	Values of Kinetic Parameter $k_{\text{obs}}, \varepsilon_{\text{app}}$ and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $C_6H_5CH_2NCH_2CH_3$	
	buffer. ^a	125
Table A-10:	Values of Kinetic Parameter $k_{obs}, \varepsilon_{app}$ and A_o Calculated from Eq.	
	(3-13) for the Cleavage of 26 in the Presence of $C_6H_5CH_2N(CH_3)_2$	
	buffer. ^a	127

xii

Table A-11:Values of Kinetic Parameter k_{obs} , \mathcal{E}_{app} and A_o Calculated from Eq.
(3-13) for the Cleavage of 26 in the Presence of
o-HOCH₂C₆H₅CH₂N(CH₃)₂ buffer.^a129Table A-12:Values of pH and [NaOH]_T/M for The Plot of pH Versus
ln [NaOH]_T/M132

LIST OF FIGURES

	PA	4GE
Figure 1-1:	Mechanism of reduction by LiAlH ₄ .	15
Figure 1-2:	Mechanism of acetylation.	17
Figure 3-1:	UV spectra of alkaline hydrolysis of 26 at 30°C at different reaction	time
	(t) in aqueous solvent containing 6 x 10^{-5} M 26 , 1 x 10^{-3} M NaOH and	ıd
	2 % CH ₃ CN	41
Figure 3-2:	UV spectra of alkaline hydrolysis of 26 at 30°C at different reaction	time
	(t) in aqueous solvent containing 6 x 10^{-5} M 26 , 1 x 10^{-3} M NaOH and	ıd
	50 % CH ₃ CN	41
Figure 3-3:	UV spectra of alkaline hydrolysis of 26 at 30°C at different reaction	time
	(t) in aqueous solvent containing 6 x 10^{-5} M 26 , 1 x 10^{-3} M NaOH and	ıd
	80 % CH ₃ CN.	42
Figure 3-4:	UV spectra of acid hydrolysis of 26 at 30°C at different reaction time	e (t)
	in aqueous solvent containing 6 x 10^{-5} M 26 , 1 x 10^{-3} M HCl and 2 %	б
	CH ₃ CN.	43
Figure 3-5:	UV spectra of acid hydrolysis of 26 at 30°C at different reaction time	e (t)
	in aqueous solvent containing $6 \ge 10^{-5}$ M 26 , $1 \ge 10^{-3}$ M HCl and 50	%
	CH ₃ CN.	44
Figure 3-6:	UV spectra of acid hydrolysis of 26 at 30°C at different reaction time	e (t)
	in aqueous solvent containing $6 \ge 10^{-5}$ M 26 , $1 \ge 10^{-3}$ M HCl and 80	%
	CH ₃ CN.	44
Figure 3-7:	HPLC chromatogram : $1 = \text{NaBr}$, $\mu = 0.4 \text{ M}$, $2 = 48 (0.001 \text{ M})$, $3 = 4$	4
	(0.001 M), 4 = 43 (0.10 M) and 5 = 26 (0.001 M). Eluent : Isopropar	10l/
	water (35 % : 65 % v/v), column temperature = room temperature	
	injected volume = $20 \ \mu l$.	54
Figure 3-8:	HPLC chromatogram shows the peaks of reaction mixture at, $t = 0$ (A	4)
	and $t = \infty$ (B). C is the chromatogram of standard product, 44. Eluent	t :
	Isopropanol/water (35 %: 65 % v/v), column temperature = room	

xiv

temperature, injected volume = $20 \mu l$.

- Figure 3-9: HPLC chromatogram: 1 = 45 (0.001M), 2 = 48 (0.001 M), 3 = 37 (0.2 M) and 4 = 26 (0.001 M). Eluent: Isopropanol/water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 μl. 57
- **Figure 3-10**: HPLC chromatogram shows the peaks of reaction mixture at, t = 0 (C) and $t = \infty$ (B). A is the chromatogram of standard product, **45**. Eluent : Isopropanol/water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 µl. **58**
- Figure 3-11: HPLC chromatogram: 1 = NaBr, $\mu = 0.4 \text{ M}$, 2 = 48 (0.001 M), 3 = 53 (0.10 M), 4 = 26 (0.001 M). Eluent: Isopropanol : water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 μ l
 - 59

56

- **Figure 3-12**: HPLC chromatogram shows the peaks of reaction mixture at, t = 0 (A) and $t = \infty$ (B). Eluent: Isopropanol : water (20 % : 80 % v/v), column temperature = room temperature, injected volume = 20 µl. **60**
- Figure 3-13: HPLC chromatogram : 1 = NaBr, $\mu = 0.4 \text{ M}$, 2 = 48 (0.001 M), 3 & 4 = 35 (0.08 M), 5 = 26 (0.001 M), 6 = 42 (0.001 M) and 7 = 29 (0.001 M). Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 µl. 62
- **Figure 3-14**: HPLC chromatogram shows the peaks of reaction mixture at, t = 0 (A) and $t = \infty$ (B) which represented by A and B respectively. Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 µl. 63
- **Figure 3-15**: HPLC chromatogram shows the peaks of reaction mixture at, t = 4260 s (~ $t_{1/2}$). Chromatogram A shows pure reaction mixtures while chromatogram B shows the mixture of 0.1 ml of **42** (0.001 M) and 0.1 ml reaction mixture. Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 µl 64
- **Figure 3-16**: HPLC chromatogram shows the peaks of reaction mixture at, $t = \infty$.

Chromatogram A shows pure reaction mixtures while chromatogram B shows the mixture of 0.1 ml of **73** (0.001 M) and 0.1 ml reaction mixture. Eluent: Isopropanol : water (35 % : 65 % v/v), column temperature = room temperature, injected volume = 20 μ l. **65**

- Figure 4-1: Plot of Abs versus time, t, the aminolysis of 6×10^{-5} M 26 at 0.02 M [CH₃NH₂]_T, 50 % f.b, 0.4 M total ionic strength and T = 30° C. The solid line is drawn through the calculated data points usind Eq. (3-13)
- Figure 4-2:Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different
pH for aminolysis of 26 with $[Am]_T = [49]_T$, $\mu = 0.4$ M at pH 9.80 (\blacksquare),
10.15 (\blacktriangle), 10.35 (\circ), and 10.56 (\square) respectively. The solid line are
drawn through the calculated data points using Eq. (3-15) as described
in the text.72
- Figure 4-3: Plots of pseudo-first order rate constant k_{obs} versus [Am]_T at different pH for aminolysis of 26 with [Am]_T = [43]_T, μ = 0.4 M at pH 8.28 (■), 8.51 (▲), 8.72 (○), 8.91 (□) and 9.31 (Δ) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text.
- **Figure 4-4**: Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different pH for aminolysis of **26** with $[Am]_T = [$ **43** $]_T$, $\mu = 0.3$ M at pH 8.37 (**•**), 8.46 (**△**), 8.65 (\circ), 8.86 (\Box) and 9.25 (**△**) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text. **74**
- Figure 4-5:Plot of pH versus ln [NaOH] for determination of [OH⁻] at 50 % CH₃CN: 50 % H₂O v/v, $\mu = 0.3$ M and T = 30° C. The solid line is drawn using
empirical Eq. (4-6).76
- **Figure 4-6**: Plot of pH versus ln [NaOH] for determination of [OH⁻] at 50 % CH₃CN : 50 % H₂O v/v, $\mu = 0.4$ M and T = 30° C. The solid line is drawn using

71

empirical Eq. (4-7).

- **Figure 4-7**: Plots of k_b/f_b (A1) versus [OH⁻] for aminolysis of 26 in the presence of primary amines: 49 (\blacktriangle) ^{*a*}, 43 (\triangle) ^{*a*} and 43 (\circ)^{*b*} respectively. The solid line are drawn through the calculated data points using Eq. (4-5) as decribed in text. ^{*a*} $\mu = 0.4$ M, ^{*b*} $\mu = 0.3$ M. **78**
- Figure 4-8:Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different
pH for aminolysis of 26 with $[Am]_T = [50]_T$ is= 0.4 at pH 10.05 (**n**),
10.20 (**A**), 10.29 (\circ), 10.32 (\Box) and 10.66 (Δ) respectively. The solid
line are drawn through the calculated data points using Eq. (3-15) as
described in the text.81
- Figure 4-9:Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different
pH for aminolysis of 26 with $[Am]_T = [37]_T$ is= 0.4 at pH 10.34 (•),
10.44 (•), 10.77 (□) and 11.10 (○) respectively. The solid line are draw
through the calculated data points using Eq. (3-15) as described in the
text.82
- **Figure 4-10**: Plotss of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different pH for aminolysis of **26** with $[Am]_T = [$ **51** $]_T$ is= 0.4 at pH 8.64 (**•**), 8.79 (**•**), 9.00 (\circ), 9.22 (\Box) and 9.63 (**•**) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text. **83**
- **Figure 4-11**: Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different pH for aminolysis of **26** with $[Am]_T = [52]_T$ is= 0.4 at pH 8.72 (**•**), 8.81 (**•**), 9.11 (\circ), 9.31 (\Box) and 9.71 (**•**) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text. **84**
- **Figure 4-12**: Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different pH for aminolysis of **26** with $[Am]_T = [$ **51** $]_T$ is= 0.3 at pH 8.60 (**■**), 8.71 (**▲**), 8.97 (\circ), 9.16 (\square) and 9.60 (**△**) respectively. The solid line are

drawn through the calculated data points using Eq. (3-15) as described in the text. 85

- **Figure 4-13**: Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different pH for aminolysis of **26** with $[Am]_T = [52]_T$ is= 0.3 at pH 8.65 (**•**), 8.77 (**•**), 8.97 (\circ), 9.21 (\Box) and 9.61 (**•**) respectively. The solid line are drawn through the calculated data points using Eq. (3- 15) as described in the text. **86**
- **Figure 4-14**: Plots of $k_b/f_b(A1)$ versus [OH⁻] for aminolysis of **26** in the presence of secondary amines: $(50 (\blacktriangle)^a, 51 (\circ)^a, 52 (\Box)^a, 51 (\bullet)^b, and 52 (\blacksquare)^b$ respectively. The solid line are drawn through the calculated data points using Eq. (4-5) as described in text. $^a = \mu = 0.4 \text{ M}, ^b = \mu = 0.3 \text{ M}.$ **88**
- **Figure 4-15**: Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different pH for aminolysis of **26** with $[Am]_T = [53]_T$ at pH 8.07 (\blacklozenge), 8.20 (Δ), 8.16 (\circ), 8.34 (\blacktriangle), 8.35 (\longrightarrow), 8.50 (\blacksquare), 8.45 (\times), 8.76 (\bullet) and 8.65 (\diamond) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text. $\mu = 0.4$ M. **91**
- **Figure 4-16**: Plots of pseudo-first order rate constant k_{obs} versus $[Am]_T$ at different pH for aminolysis of **26** with $[Am]_T = [\mathbf{35}]_T$ at pH 7.91 (\blacktriangle), 7.99 (\Diamond), 8.21 (Δ), 8.22 (\bullet), 8.27 (\circ), 8.56 (\Box), 8.68 (-),8.93 (+), and 8.85 (\bullet) respectively. The solid line are drawn through the calculated data points using Eq. (3-15) as described in the text. μ = 0.4 M. **92**
- **Figure 4-17**: The dependence of the nucleophilic second-order rate constant (k_n) for the reaction of 26 with amines nucleophiles on the pK_a of the conjugate acid of the amines at 30°C. The solid line is drawn through the leastsquares calculated points using Bronsted equation with slope (β_{nuc}) of 0.91 ± 0.20 and intercept (C) -9.12 \pm 1.8 M⁻¹s⁻¹. In the Bronsted plot : Methylamine (\circ)^{*a*}, *N*-benzylamine (Δ), *N*-benzylamine (\blacktriangle)^{*b*}, *N*,*N*dimethylamine (\diamond)^{*a*}, *N*,*N*-diethylamine (*)^{*a*}, *N*-methylbenzylamine (\diamond)^{*a*},

N-methylbenzylamine $(\bullet)^b$, *N*-ethylbenzylamine $(\Box)^a$, *N*ethylbenzylamine $(\bullet)^b$, *N*,*N*-dimethylbenzylamine $(\times)^a$ and *N*,*N* -(diethylaminomethyl)benzyl alcohol $(+)^a$. ${}^a \mu = 0.4$ M, ${}^b \mu = 0.3$ **104**

Figure 4-17 : The dependence of the third - order rate constant (k_{OH}) for the reactionof 26 with amines nucleophiles on the pKa of the conjugate acid of theamines at 30°C. The solid line is drawn through the least-squarescalculated points using Bronsted equation with slope (β_{nuc}) of 0.88 ±0.20 and intercept (C) -5.40 ± 1.9 M⁻¹s⁻¹. In the Bronsted plot :Methylamine (\circ)^a, N-benzylamine (\Box), N-benzylamine (Δ)^b, N,N-dimethylamine (\ast)^a, N,N-methylbenzylamine (\bullet)^a, N,N-methylbenzylamine (\diamond)^b, N,N-ethylbenzylamine (\bullet)^a, N,N-ethylbenzylamine (\bullet)^a. μ = 0.4 M, ^b μ = 0.3 M

LIST OF SYMBOLS AND ABBREVIATIONS

Abs	absorbance
Ar	aromatic
A _{cald}	calculated absorbance
A _{obs}	observed absorbance
[Am] _T	total amine buffer concentrations
A1	k_b/f_b
b.p.	boiling point
CDCl ₃	deuterated chloroform
CH ₃ CN	acetonitrile
CH ₃ NH ₂	methylamine
$C_6H_5CH_2NH_2$	benzylamine
(d)	doublet
Eq.	equation
f_b	free base
HPLC	high performance liquid chromatography
HCl	hydrochloric acid
H ₂ O	water
IGA	intramolecular general acid
IGB	intramolecular general acid
IR	infrared
J	coupling constant
K _a	ionization constant
k _n	second – order rate constant for nucleophlic
k _{OH} ,	third – order rate constant for specific base – catalyzed
k _b	second – order rate constant
ko	uncatalyzed catalysis
М	mole per liter

mp.	melting point
m	minute
(m)	multiplet
Mw	molecular weight
NMR	nuclear magnetic resonance
NaOH	sodium hydroxide
NaBr	sodium bromide
(q)	quartet
ref.	reference
R _f	retention rime
rt	room temperature
8	second
(s)	singlet
t	time
(t)	triplet
(t)	uipiet
T	temperature
T THF	temperature tetrahydrofuran
T THF TLC	temperature tetrahydrofuran thin layer chromatography
T THF TLC UV	temperature tetrahydrofuran thin layer chromatography ultraviolet
T THF TLC UV vis	temperature tetrahydrofuran thin layer chromatography ultraviolet visible
T THF TLC UV vis v/v	temperature tetrahydrofuran thin layer chromatography ultraviolet visible volume per volume
T THF TLC UV vis v/v λ	temperature tetrahydrofuran thin layer chromatography ultraviolet visible volume per volume wavelength
 T THF TLC UV vis v/v λ β_{nuc} 	temperature tetrahydrofuran thin layer chromatography ultraviolet visible volume per volume wavelength Bronsted slope
 T T THF TLC UV vis ν/v λ β_{nuc} μ 	temperature tetrahydrofuran thin layer chromatography ultraviolet visible volume per volume wavelength Bronsted slope ionic strength
 T THF TLC UV vis v/v λ βnuc μ % 	temperature tetrahydrofuran thin layer chromatography ultraviolet visible volume per volume wavelength Bronsted slope ionic strength percentage
 T THF TLC UV vis ν/v λ βnuc μ % []] 	temperature tetrahydrofuran thin layer chromatography ultraviolet visible volume per volume wavelength Bronsted slope ionic strength percentage concentration
T THF TLC UV vis ν/ν λ β _{nuc} μ % []] [Am] _T	temperature tetrahydrofuran thin layer chromatography ultraviolet visible volume per volume wavelength Bronsted slope ionic strength percentage concentration

LIST OF COMPOUNDS

↓____

ОН

O NMe₂ OH NMe₂ ОН

∬ O

NHEt

CH₂O H `CH₂ŃMe₂

