EMULSIFICATION AND DISPERSANT PROPERTIES OF SUGAR ESTER GLYCOLIPID IN WATER IN OIL AND OIL IN WATER EMULSION

AZRAH ABDUL AZIZ

UNIVERSITY OF MALAYA
2008
EMULSIFICATION AND DISPERSANT PROPERTIES OF SUGAR ESTER GLYCOLIPID IN WATER IN OIL AND OIL IN WATER EMULSION

BY
AZRAH ABDUL AZIZ

DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA

DISSERTATION PRESENTED FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2008
ABSTRACT

The influence of different dispersing agent on the rheological behaviors of paraffin oil-water emulsion with addition of TiO$_2$ for uv-protect and moisturizing active ingredient was studied. While making creams with minimal structural defects and longer storage stability, it is important that preparation conditions be optimized. Settle volume properties, Zeta potential, effective diameter and settle volume of TiO$_2$ suspension were studied in the presence of glycolipid (DDM and Carrageenan), nonionic (PEG 10,000 and Brij 35P) as well as anionic surfactants (sodium dodecyl sulfate, SDS). In the experiments, the higher concentration of dispersing agents shows higher settle volume percentage, higher zeta potential and gives a smaller average size of particles distribution in the TiO$_2$ solution. The results obtained show significant influence of the type of surfactants on the measured quantities. Among the dispersing agents studied, λ-Carragenan was proven to be most effective dispersing agent followed by DDM, SDS, PEG 10,000, and Brij 35P. It could be due to the existence of anionic sulfate groups, λ-Carrageenan can interact strongly with oppositely charged cationic by ionic interaction. The systems investigated also reports structure and viscoelastic property of dispersing agents stabilized o/w emulsions, and they tend to show higher shear viscosity (η) at whatever given shear rate ($\dot{\gamma}$) during steady rotational shear measurement and appeared superior of storage modulus (G') and loss modulus (G'') value throughout all measured in oscillatory shear test, in contrast to by DDM, SDS, PEG 10,000, and Brij 35P stabilized emulsion. These λ-Carragenan stabilized emulsions also exhibited a higher degree of shear thinning behavior and results in a higher magnitude of yield stress (σ_y),which means better stabilized and have a good storage stability compared to DDM, SDS, PEG 10,000, and Brij 35P stabilized o/w emulsions.
ACKNOWLEDGMENTS

In the name of Allah, the most Benevolent and the most Merciful.
All gratifications are referred to Allah.

I express my utmost gratitude and special appreciation to my supervisors, Associate Professor Dr. Misni Misran for their guidance, encouragement, support, invaluable advice, kind suggestions and constructive comments during this project. I thank him for making time for me even he did not have enough for himself, it made a difference. I appreciate his patient instruction and his dedication to the education on me.

I also record my sincere appreciation to all members from Colloid and Surface laboratory of their generous help and cooperation and special thank to MOSTI for the IRPA top-down project under Grant No. 09-02-03-9010-SR 0004/04 that has generously been given financial support towards my studies.

I am deeply indebted and grateful to my family especially my sister, Azmin Abdul Aziz for their concern, patience and kindness in helping and guiding me throughout this project and to my lovely husband, Azhari Abdul Aziz for encouraging me to pursue this degree, and supporting me every step along the way.

Last but not least, I would like to thank everyone who has helped me directly or indirectly towards completing this research project.
Table of Contents

Abstract .. ii
Acknowledgment ... iv
Table of Contents .. v
Abbreviations ... viii
Glossary ... x
List of Tables .. xi
List of Figures .. xi

CHAPTER ONE : INTRODUCTION

1.1 REVIEW OF RESEARCH ... 2
1.2 OBJECTIVE OF RESEARCH ... 3
1.3 ORGANIZATION OF RESEARCH .. 3
1.4 THEORETICAL BACKGROUND ... 4
 1.4.1 Classification of Surfactants ... 5
 1.4.2 Biosurfactants .. 7
 1.4.3 Classification of Biosurfactants ... 7
 1.4.4 Glycolipid .. 8
 1.4.5 Thickening Agent .. 8
 1.4.6 Polyethylene Glycol (PEG 10,000) .. 9
 1.4.7 Carrageenan .. 9

1.5 RHEOLOGICAL BEHAVIOR OF EMULSION ... 11

1.6 RHEOLOGY PROPERTIES ... 12
1.7 RHEOLOGICAL PROPERTIES OF MATERIAL--------------------------- 13
 1.7.1 Solids-- 15
 1.7.2 Ideal Elastic Solids-- 15
 1.7.3 Ideal liquids--- 16
 1.7.4 Rheological Classification of Non-Newtonian Behaviors
 (Time Independent and Time Dependent Fluid)--------- 17
 1.7.5 Viscosity--- 20
 1.7.6 Viscoelasticity--- 22

CHAPTER TWO : INSTRUMENTATION

2.1 INSTRUMENTATION
 2.1.1 Dynamic Light Scattering----------------------------------- 26
 2.1.2 Zeta potential measurements------------------------------- 26
 2.1.3 Kruss Tensiometer K122----------------------------------- 27
 2.1.4 Rheometer--- 28
 2.1.5 Polarizing Microscope------------------------------------- 30

2.2 EXPERIMENTAL AND CHEMICALS
 2.2.1 Materials--- 31
 2.2.2 Sample Preparation-- 32
 2.2.3 Examination of settle volume------------------------------- 32
 2.2.4 Examination of size distribution by volume and zeta potential- 33
 2.2.5 Preparation of emulsion----------------------------------- 34
CHAPTER THREE : RESULTS AND DISCUSSION

3.1 STABILITY OF TiO$_2$ NANOPARTICLE SUSPENSION IN DISPERSING AGENTS

3.1.1 Settled volume

3.1.2 Zeta potential

3.2 RHEOLOGICAL PROPERTIES OF GLYCOLIPID BASED CREAMS FOR AND COSMETIC APPLICATIONS

3.2.1 Morphological Studies

3.2.2 Steady Shear Sweep Rheometry

3.2.3 Shear stress versus shear rate profiles

3.2.4 Oscillatory shear rheometry

CHAPTER FOUR CONCLUSIONS

REFERENCES

APPENDIX

Publication

List of Conferences

Awards
Abbreviations

\(\gamma \) Free energy of sample in liquid-vapor
\(\Delta G_{\text{formation}} \) Free energy of formation of droplets from a bulk liquid
\(\Delta A \gamma_{12} \) Interfacial tension between the two liquids
\(T \Delta S_{\text{configuration}} \) Entropy configuration
\(\Delta P \) Laplace pressure difference between two droplets
\(\theta \) Shear strain
\(F \) Force generated to surface
\(A \) Area of the surface
\(\delta u \) Deformation of material
\(h \) Distance of upper and lower level part
\(G \) Shear modulus / rigidity modulus
\(\eta \) Shear viscosity
\(\sigma \) Shear stress
\(\gamma \) Shear strain / deformation
\(\dot{\gamma} \) Shear strain rate
\(\sigma_y \) Yield stress
\(\eta_0 \) Zero shear viscosity
\(\sigma_E \) Shear stress for elasticity
\(\gamma_E \) Shear strain for elasticity
\(\sigma_v \) Shear stress for viscosity
\(\gamma_v \) Applied shear rate for viscosity
\(\omega \) Angular velocity / frequency
\(\gamma_0 \) Maximum strain / amplitude
\(G^* \) Complex modulus
\(G' \) Storage modulus / elasticity
\(G'' \) Loss modulus / viscosity
\(\delta \) Phase angle
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_s</td>
<td>Surface tension</td>
</tr>
<tr>
<td>P_w</td>
<td>Wilhelmy-force</td>
</tr>
<tr>
<td>l_w</td>
<td>Wetted length</td>
</tr>
<tr>
<td>Θ</td>
<td>Contact angle between the tangents at the wetting line</td>
</tr>
<tr>
<td>θ</td>
<td>Deflection angular</td>
</tr>
<tr>
<td>ΔG_{mic}^0</td>
<td>Free energies of micellization</td>
</tr>
<tr>
<td>η_r</td>
<td>Relative viscosity</td>
</tr>
<tr>
<td>η_{low}</td>
<td>Low shear viscosity</td>
</tr>
<tr>
<td>n</td>
<td>Power law index</td>
</tr>
<tr>
<td>ω</td>
<td>Frequency</td>
</tr>
<tr>
<td>G_p</td>
<td>Plateau modulus</td>
</tr>
<tr>
<td>γ_{cr}</td>
<td>Critical strain</td>
</tr>
<tr>
<td>E_c</td>
<td>Cohesive energy</td>
</tr>
<tr>
<td>Π</td>
<td>Interfacial pressure</td>
</tr>
<tr>
<td>Γ_{ss}</td>
<td>Saturation adsorption density</td>
</tr>
<tr>
<td>A_{min}</td>
<td>Minimum surface area per surfactant molecule</td>
</tr>
</tbody>
</table>
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDM</td>
<td>Dodecyl-β-D-maltoside</td>
</tr>
<tr>
<td>o/w</td>
<td>Oil in water emulsion</td>
</tr>
<tr>
<td>w/o</td>
<td>Water in oil emulsion</td>
</tr>
<tr>
<td>E</td>
<td>Weight percentage of ethylene oxide in molecule</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>CMC</td>
<td>Critical micelle concentration</td>
</tr>
<tr>
<td>PEG 10,000</td>
<td>Polyethylene Glycol 10,000</td>
</tr>
<tr>
<td>Brij 35P</td>
<td>Polyethylene dodecyl ether</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Table Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table 1.1: Some classes of surfactant and their applications</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Table 2.1: Several of concentration dispersing agents to examine</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>stability of solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 3.1: Values of zeta potential for dispersing agents stabilized titanium</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>oxide colloidal systems at 25°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 3.2: Literature data of zeta potential values referring for stability</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>behavior of the colloid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 3.3: Values of Yield Stress of different type of based creams.</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Table 3.4: Values of Critical Strain of different type of based creams.</td>
<td>71</td>
</tr>
<tr>
<td>Figure 1.1</td>
<td>Schematic diagram of surface active molecule (Surfactant)</td>
<td>2</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Classification of Surfactants</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Molecular structure of Polyethylene glycol</td>
<td>.4</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Molecular structure of Kappa, Iota and Lambda Carrageenans.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>An elastic solid can be deformed in number of different way</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>At small deformation, there is a linear relationship between the applied stress and the resultant strain for an ideal elastic solid. At higher deformations, the stress is no longer linearly related to strain and the material will eventually break</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>An emulsion that contains flocculated droplets exhibits shear thinning behavior because the flocs are deformed and disrupted in the shear field.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Flow curve of Newtonian and non-Newtonian behaviors</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Typical behaviors of non-Newtonian fluid system with thinning properties.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Laminar flow of a Newtonian liquid in simple shear.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Laminar flow of a Newtonian liquid in viscoelastic shear</td>
<td>22.</td>
</tr>
</tbody>
</table>
Figure 2.1: Diagram culture tubes to determine settle volume % height 33

Figure 2.2: Behaviors of \(\lambda\)-Carrageenan stabilized emulsion blended with titania for 8 month preparation. 35

Figure 2.3: Behaviors of DDM stabilized emulsion blended with titania for 8 month preparation 36

Figure 2.4: Behaviors of PEG 10,000 stabilized emulsion blended with titania for 8 month preparation 36

Figure 2.5: Behaviors of SDS stabilized emulsion blended with titania for 8 month preparation. 38

Figure 2.6: Behaviors of Brij 35P stabilized emulsion blended with titania for 8 month preparation. 39

Figure 3.1: Settled volume-time profiles of Brij 35P stabilized titanium oxide colloidal systems as a function of Brij 35P 45

Figure 3.2: Settled volume-time profiles of SDS stabilized titanium oxide colloidal systems as a function of SDS 45

Figure 3.3: Settled volume-time profiles of PEG 10,000 stabilized titanium oxide colloidal systems as a function of PEG 10,000. 46

Figure 3.4: Settled volume-time profiles of DDM stabilized titanium oxide colloidal systems as a function of DDM concentration. 46

Figure 3.5: Settled volume-time profiles of \(\lambda\)-Carrageenan stabilized titanium oxide colloidal systems as a function of \(\lambda\)-Carrageenan concentration. 47
Figure 3.6 (a)–(e) : Zeta potential profiles of different dispersing agents stabilized titanium oxide colloidal systems as a function of λ-Carrageenan concentration at 25 °C

Figure 3.7 : Mean size profiles versus different concentration of dispersing agents stabilized TiO$_2$ colloidal systems.

Figure 3.8: Volume of particles profiles versus different concentration of dispersing agents stabilized TiO$_2$ colloidal systems.

Figure 3.9 : Light micrograph image of λ-Carrageenan based cream at 25 °C

Figure 3.10 : Light micrograph image of DDM based cream at 25 °C.

Figure 3.11 : Light micrograph image of SDS based cream at 25 °C.

Figure 3.12 : Light micrograph image of PEG 10,000 based cream at 25 °C.

Figure 3.13 : Light micrograph image of Brij 35P based cream at 25 °C.

Figure 3.14 : Droplets size distribution of different surfactant to formulate based creams. (Total 8000 droplets).(a) λ-Carrageenan, (b) DDM, (c) PEG 10,000, (d) SDS and (e) Brij 35P

Figure 3.15 : Shear viscosity profile of different type of based creams.

Figure 3.16 : Shear stress versus shear rate profiles of different type of based creams.

Figure 3.17 : Shear rate sweep of different types of based creams.
Figure 3.18: Dynamic moduli of different type of based creams. 72

Figure 3.19: Plot of δ against ω as a function of different type of surfactant 74