Contents

Acknowledgments i
Abstract ii
Abstrak iii
Contents iv

Chapter 1 : Introduction

[A] Micelles and Mixed Micelles Chemistry - an Overview
(I) Micelles 1
(II) Functionalized Surfactants and Metallomicelles 5
(III) Mixed Micelles 7

[B] Modeling of Mixed Micelles - an Overview
(I) Pseudophase Separation Models 9
(II) Mass Action Models 10
(III) Molecular Models 11
(IV) Group Contribution Method 12
(V) Various treatments based on Pseudophase Separation Model 13
(a) Development of ideal mixing models 13
(b) Development of nonideal mixing models 16
 (i) Regular Solution Approach 16
 (ii) Gibbs-Duhem Approach 32
 (iii) Other Methods 36
[C] Kinetic Studies in Micellar and Mixed Micellar Solutions
(I) Micellar Kinetics - an Overview 42
(II) Metallosurfactants, Metallomicelles in Kinetic Studies 43
(III) Kinetic Studies in the Presence of Mixed Micellar Solutions 45

[D] Some Background Information on the Substrates Used in This Project
(I) 3,5-di-tert-butylcatechol (3,5-DTBC) 48
(II) p-nitrophenyl diphenyl phosphate (PNPDPP) 52

Chapter 2: Experimental

[A] Introduction to Experimental Techniques
(I) Surface Tensiometry Measurements 56
(II) ESR measurements 60
(III) UV-Visible studies 63

[B] Materials, Preparation, Instrumentation and Experimental methods
(I) Materials 64
(II) Preparation of Compounds 65
(III) Instrumentation 68
(IV) Experimental methods 69

Chapter 3: Results and Discussion

(A) Surface Tension Measurements

Treatment of mixed micelles and mixed monolayers systems with:

(I) Regular Solution Approach 84
(II) Gibbs-Duhem Approach

(III) Other Methods

(B) UV-Visible Studies

(C) ESR Studies

(D) Kinetic Studies

(I) Autoxidation of 3,5-di-tert-butylcatechol

(II) Hydrolysis of p-nitrophenyl diphenyl phosphate

(E) Conclusion

References

Appendices

(I) Nomenclature

(II) Turbo C Programs used to calculate interaction parameter β^M, β^{ae} and β^{ar}

(III) Flow Charts to indicate method of calculating interaction parameter β^M and δ

 based on Fung's equation

(IV) MathCad 5.0 Programs used to calculate interaction parameter β^M and δ based

 on Fung’s equation

(V) Time Course Spectra of the autoxidation of 3,5-di-tert-butylcatechol

(VI) Time Course Spectra of the hydrolysis of p-nitrophenyl diphenyl phosphate