CONTENTS

	Page				
TITLE	i				
ABSTRACT	ii				
ACKNOWLEGEMENTS	iii				
CONTENTS	v				
LIST OF TABLES .	ix				
LIST OF FIGURES	x				
CHAPTER I: INTRODUCTION	1				
1.1 The need for biodegradable plastic					
1.2 Biodegradation	4				
1.2.1 The importance of biodegradation	4				
1.2.2 Standard definitions & methods to evaluate biodegradability	5				
1.2.3 The sequence of biodegradation tests	9				
1.3 Biodegradable plastics in the market	12				
1.4 Polyhydroxyalkanoates (PHA)					
1.4.1 Biodegradation of PHA	15				
1.4.2 Factors affecting biodegradation of PHAs	10				
1.4.3 Biodegradability tests of PHAs and other related tests	10				
1.5 Scope & objective based on biodegradation in environment					
management system	18				

CHAPTI	ER II: 1	MATERIALS AND METHODS	21			
2.1	PHA b	piosynthesis	21			
	2.1.1	Bacterial stain	21			
	2.1.2	Strain maintenance	21			
	2.1.3	Inoculum	21			
	2.1.4	Media and growth conditions				
		2.1.4.1 Palm kernel oil	22			
		2.1.4.2 Saponification of PKO	23			
	2.1.5	PHA extraction and PHA film casting	23			
2.2	Biodeg	gradability test	24			
	2.2.1	Sampling river water	24			
	2.2.2	Inoculum preparation	24			
	2.2.3	Biodegradability experimental design				
	2.2.4	Initial medium analysis - cell count, pH and DOC	29			
		2.2.4.1 Cell count	29			
	2.2.5	Test materials	29			
	2.2.6	$\ensuremath{\text{CO}_2}$ analysis and final day river water analysis – cell count,				
		pH, DOC and GC	30			
		2.2.6.1 DOC measurement for river water	31			
		2.2.6.2 Gas chromatography (GC) of river water	31			
	2.2.7	PHA sample analysis	33			
	2.	.2.7.1 Dry weight	33			
	2.	.2.7.2 Scanning electron microscopy (SEM) & phase-contrast				
		microscopy	33			
	2.	.2.7.3 Purification of incubated PHA films	33			

	2	2.2.7.4	Infrared (IR) spectrometry	34		
	2	2.2.7.5	Molecular weight by gas permeation chromatography			
			(GPC)	34		
	2	2.2.7.6	Monomer composition by gas chromatography (GC)	34		
СНАРТІ	ER III:	RESUL	TS AND DISCUSSION	35		
3.1	3.1 Preliminary studies					
3.2	PHA i	PHA inherent biodegradability studies				
	3.2.1	CO ₂ rel	eased	50		
	3.2.2	Viable	cell count and pH	53		
	3.2.3	Dissolv	ed organic carbon (DOC) in river water	56		
	3.2.4	GC ana	lysis of river water	58		
	3.2.5	PHA di	y weight	60		
	3.2.6	Scannin	ng electron micrograph (SEM)	62		
	3.2.7	Infrare	d (IR) spectrometry analysis	68		
	3.2.8	Molecu	alar weight by gas permeation chromatography (GPC)	73		
	3.2.9	Monon	ner composition of PHA by gas chromatography (GC)	73		

CHAPTER IV: CONCLUSION

78

APP	PENDIX	82	
1	Experimental set up of Sturm test	82	
2	Calculation of %CO2-biodegradability	83	
3	Standard Curves for methyl ester of 3-hydroxyalkanoic acid	84	
4	Calculation of %w/w and %mole of monomer composition in PHA from GC		
	of PHA sample	90	
5	Calculation of PHA molecular weight & theoretical carbon dioxide released		
	from 100% degradation of PHA	92	
REF	REFERENCES		