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Abstract

Driven by the recent development of Vertical-Cavity Surface-Emitting Lasers

(VCSELs) technology, the modeling and theoretical studies of semiconductor laser

based on VCSELs diode operating at 1.55 pm length for long-di optical
communication is carried out. Modeling and simulation for the DBR mirror and active
region of the VCSELs components using HS_Design are performed followed by a
complete VCSELs device characteristic simulation using LaserMOD. A comparison
between three types of DBR mirror of InGaAsP/InP, GaAs/AlGaAs and SiC/MgO
shows that the GaAs/AlGaAs system exhibits the highest reflectivity with 99.9% and
99.7% for n- and p-DBR mirror respectively. The VCSELSs active region consists of
eight quantum wells with 1% compressive strain recorded the highest optical gain
around 1.55 pm for the active region simulation. From these results, a complete
VCSELs diode employing 41.5 periods of GaAs/Aly7,Gag2sAs n-DBR mirror and 33.5
periods of GaAs/Alp74Gap26As p-DBR mirror wafer-fused to InGaAsP active region is
proposed for device characteristics simulation. The mode analysis shows that the
fundamental optical mode is overlapping the active region. A symmetric and circular
emitted beam with a small beam divergence of 2° is observed from the near-field and
far-field characterization, resulting in high coupling efficiency to optical fibers. The
simulated PL spectra and optical spectrum exhibits lasing wavelength at 1.55 pm with
single longitudinal mode operation. The proposed 1.55 pm VCSELs diode
demonstrated a threshold current of 1.05 mA corresponding to a threshold current
density of 1.53 kA/em?, 0.56 of differential quantum efficiency with 0.28 power
conversion efficiency, voltage threshold of 0.95 V, turn-on voltage of 0.8 V and DBR

series resistance of 143 Q.



Abstrak

Dengan kemajuan pesat dan terkini yang ditunjukkan oleh teknologi Vertical-
Cavity Surface-Emitting Lasers (VCSELSs), pembinaan model dan kajian teoritikal
semikonduktor laser berdasarkan diod VCSELs dengan operasi panjang gelombang
1.55 pm untuk komunikasi optik jarak jauh telah dijalankan. Model dan simulasi
komponen VCSELs seperti cermin DBR dan kawasan aktif dilakukan dengan
HS_Design dengan diikuti simulasi sifat peranti bagi diod VCSELs yang lengkap
menggunakan LaserMOD. Perbandingan antara tiga jenis cermin DBR iaitu
InGaAsP/InP, GaAs/AlGaAs dan SiC/MgO menunjukkan sistem GaAs/AlGaAs
menghasilkan pantulan tertinggi sebanyak 99.9% dan 99.7% bagi cermin n- dan p-DBR.
Kawasan aktif VCSELs yang terdiri daripada lapan telaga kuantum dengan
pemampatan tekanan sebanyak 1% mencatatkan peningkatan optik tertinggi sekitar 1.55
um untuk simulasi kawasan aktif. Berdasarkan keputusan ini, diod VCSELs yang
lengkap terdiri daripada 41.5 tempoh bagi GaAs/Alp72Gag2sAs cermin n-DBR dan 33.5
tempoh bagi GaAs/Alg74Gag26As cermin p-DBR dengan dicantumkan pada kawasan
aktif InGaAsP dicadangan untuk simulasi sifat peranti. Analisis mod menunjukkan
pertindihan mod optikal asas dengan kawasan aktif. Bim laser yang dipancarkan adalah
simetri dan berbentuk bulat dengan perkembangan bim sekecil 2° diperhatikan daripada
pencirian medan-dekat dan medan-jauh, menunjukkan pekali penggabungan yang tinggi
kepada fiber optik. Simulasi PL dan spektrum optikal menunjukkan panjang gelombang
laser pada 1.55 um dengan operasi mod tunggal terhasil. Diod 1.55 pm VCSELSs yang
dicadangkan mempunyai arus kritikal pada 1.05 mA, merujuk kepada ketumpatan arus
kritikal 1.53 kA/cm?, 0.56 pekali perbezaan kuantum dengan 0.28 pekali penukaran
kuasa, voltan kritikal pada 0.95 V, voltan peningkatan pada 0.8 V dan rintangan sesiri

DBR sebanyak 143 Q.
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