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Chapter Four Modeling and Computational Methods

Modeling and simulation studies in designing complex devices have become
standard practice in recent years. This is crucial for preliminary device parameters study
where it can reduce the cycle-time and end-product cost. There are several modeling
and simulation tools that can simulate VCSELSs such as PICS3D [81], HS_Design [82],
SimWindows [83], ATLAS [84] and LaserMOD [85]. In this research, HS_Design
Version 1.0 is used to study VCSELs DBR-mirror and active region components while
LaserMOD Version 2.0 is used for complete VCSELSs device characteristic simulation.
This chapter provides theoretical background for the modeling and computational

methods used in the simulation work of VCSELSs.

4.1 Optics Calculation
The light propagation in a laser structure is determined by the solution of

Maxwell’s equations. The models used for optical studies are described below.

4.1.1 Transfer Matrix Method
Transfer Matrix Method (TMM) is employed in VCSELs optical mode calculations.
The field at material interface can be separated into for- and backward-propagating

plane waves. Based on Maxwell equations (frequency domain) that are [82]:

VxE, =i2H,, VxH,=-i2kE,
c c 4.1)
v-(k,E,)=0, V-H, =0
It is assumed that all the layers are homogenous in a plane perpendicular to direction of

epitaxial growth (z-coordinate), the complex permittivity tensor is:

0 4.2)
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Here, «,, and x, are the complex permittivity in the directions perpendicular and

oll

parallel to the axis of symmetry (direction of growth), respectively. Then, in the j-th
-1

layer positioned between z=z , = id, andz=z = id, , where dj is the width of /-th
1=0 1=0

layer and widths of both the substrate (j =0,z <0)and superstrate (j =n+1,z>z)) are

set to zero, the vectorical fields in both the TE (electric field in the plane perpendicular
to z) and TM (magnetic field in the plane perpendicular to z) polarizations can be

expressed through a single scalar function:
v,,(r.z)= exp(iﬂlrl){FmI/ expl_iﬁy (z—zl_, )J +B,, expL-iﬂ:.J (z -z, )J} 4.3)

B, is the in-plane propagation constant, /3, ; is the z-direction propagation constant in

Jj-th layer, F, and B, are the amplitudes of forward and backward propagating

waves, respectively. The p of the electromagnetic field in the j-th layer are
all given in the Table 4.1 for both the TE and TM polarizations. Equation (4.3) and
Table 4.1 represents the exact solution of equation (4.1) in every single layer with the

complex permittivity of the type equation (4.2).

Table 4.1: Propagation constant in the direction of growth and electromagnetic field.

Parameter B 7 E,, E, H,, I
2
TE- o 2 ccdy, | ¢
2 - 1 0 £y, | £
polarization & KoL Bi Vo i B,
2
™- ® K, 1 e 1 d c 1
T KoL~ - ﬂi —i— 2 =B Vo Yo 0
polarization | X.. Koo wx,, d o

At the interfaces, standard boundary conditions for electric and magnetic fields yield the

following transfer relationships for the scalar function (4.3) and its derivative:

dy, dy,,.
Vo, =%.,-1;7,T"=7H# 4.4)
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where the factor yis defined in the Table 4.1. Combining equation (4.3) and (4.4), the

amplitudes of the forward and backward waves are transfer across the interface:

F, . | F,
=T, ”-f"] 4.5)
[Bﬂ'u] I[Bw-l
where 7, , is a square 2x2 complex transfer matrix:

%(l +¢, )exP(iAJ) %(] =< )exP(_iA/)
T, = (4.6)

“ . 1 .
E(l—é’,)exp(m/) —2-(1+C])exp(—1A/)
Information regarding the optical properties of the layers is contained in the complex

parameters ¢ and A , which are defined as follows:

¢ =M, A=p.,d, “r

B.7,
The amplitudes of the plane waves in superstrate and substrate are connected through
multiplication of the matrixes (4.5):
i) 2
TMM gives the optical field distribution (reflection, transmission or absorption
spectrum) over the entire device once the boundary conditions of the structure are
specified. The boundary conditions are formulated assuming that z-coordinate is

measured up from the substrate while the light is incident down from the superstrate:

Fypa =tos B, . =1 4.9)
F,o=0, B,,=t, *

Fo and Bo are described as in equation (4.3), where the subscripts “n+/” and “0”
l=n

indicating the superstrate (z2>z, = Zd/) and substrate (z < 0) with 7, plus 7, are the
1=0

reflection and transmission amplitude coefficients, respectively. These parameters are

expressed using the components of the transfer matrix defined by equation (4.5):
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=22 = (4.10)
TM.ZZ Tm.22

The field distribution in every layer is given by equation (4.3), with amplitudes of the
forward and backward propagating waves obtained by equations (4.5) and (4.6). The

intensity coefficients of reflection and transmission are calculated as:

(4.11)

Tm}i\'
The absorption coefficient of the vertical ‘stack, which is defined as the fraction of light
absorbed in the entire space between substrate and superstrate, is given

Ay =1-T, 15 =R, s (4.12)

4.1.1  Phonon Rate Equation
Optical field propagation and electro-thermal transport are coupled using rate equations
for the intensity within each cavity mode [85]:

as,
— = (G,,w - ]SM +RTY (4.13)
z 2

where the spontaneous emission into mode (m, @) is given by:
Rz = fav |E,[ u(o) @.14)

and the modal gain is defined as:
Gy = JaV|E,[ —<—g(0) @15)
Ny m

Here, g is the material gain; u is the spontaneous emission spectrum. The losses entering
the photon rate equation are the sum of contributions due to light leaving the cavity
through the facets, light scattered out the cavity and absorptive losses

1 1
+ +
T, T, T

o Tmiror  Tscaner  Megrm

L

a, (4.16)

The absorptive losses include free-carrier absorption and inter-valence band absorption.
With coefficients k.7, free-carrier absorption is modeled as a linear function of the
respective carrier densities:
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a, = [dV|E,[ (Kfn, + K, +a,) 4.17)
QW barriers, cladding layers and other non-active regions in semiconductor lasers
usually are designed to be transparent at the emission wavelength as given by the

effective bandgap of the active layer material.

4.2 Bulk Bandstructure Calculation
As for the bulk bandstructure model, the unperturbed stationary electron states are

taken as Bloch functions in the ideal crystal. The unperturbed state of electron at wave-

factor k in i-th band,[k,,i) is the Bloch function of the form [82]:

wi(r)= %um () @18)

where r is the coordinate vector, V is the crystal volume, and u, (r) is the periodic
function of r with the same period of the crystal lattice. Doping impurities are assumed
ionized and uniformly distributed over the layer. Space charge regions are ignored, and

therefore, every bulk layer is assumed to be electrically quasi-neutral.

4.2.1 Distribution Functions

Distribution of j-th carriers over the Bloch states in the i-th band is described with a
single-particle distribution function, f; (k), which depends on the wave-factor k. It is
assumed that all the carriers in the conduction or valence band are thermalized and
hence quasi-equilibrium Fermi-Dirac distribution function with common Fermi level
and temperature is used to describe all electrons and holes. Then, fy is a function of

energy &(k) rather than wave-factor k and written down as [82]:

-1
fq(s)=|:1+exp[A"+e—§,]] (4.19)

T

38



MODELING & COMPUTATIONAL METHODS

Here, & is the normalized chemical potential in the conduction or valence band, which is

related to the Fermi levels, ®.and ®,, and band-edge energies, E.and E, by

(oc —Et)/T‘, i=c
K ={-(®, -E)/T,, i=v} (4.20)

Aij is the energy separation between the edge of i-th band and the valley minimum in
the c-band or subband maximum in the v-band, from each of the energy of the j-th
carriers in'lhis band, 7 is the effective temperature of carriers in the i-th band. The &
and temperature describe the free-carriers statistics under the quasi-equilibrium

approximation. However, it is the carrier ion used to ize a

semiconductor layer, typically. Thus & should be resolved from the equation below [82]

¥ auu” p, (u)
N, T)2 — =N, 4.21
2N (7) /\/?oflﬂxp(é_%/rl_u) 1 @21)

where R, (T,)=2v, |:2nmy7;/(27rh)z]mis the density of states (for carriers in the

conduction band, it is multiplied by the number of valleys v;), u = &/T, and

ndy, (&
p,()=[7,(s)] —;( ) @22)
&
is the reduced density of states in the band with the dispersion law given by [82]:
272
%:n (g)=¢(1+ag) (4.23)

where m, and g, are the band-edge effective mass and parameter of nonparabolicity in i-

th band, and ¢ s the energy relative to the band edge.

When nonparabolicity is neglected, equation (4.21) is then reduces to
%N'I(Z)F;lz(é_AU/r)=N‘ (4249

with F, ( ) as the Fermi integral (normalized to the gamma-function) defined by:

17 dut
Fa(y)=r(a+l)Jm

(4.25)
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422 Direct Interband Transitions
Momentum matrix element for the direct transitions between the electron states and
wave-vector k in the i-th and j-th bands is determined by the sell periodic function:

£ (k) = (e ledlua) @26)
When squared and averaged over the solid angle 4m, for all possible interband

transitions it can be expressed by a single scalar parameter, Ep, (Kane parameter) [82]:
1% > mE,
EJdSsms&[de’"(k)! ==, (k) @27

Here, T1, (k) is the square 4x4 matrix:

0 1 1 1

e 0 20° 1+7)° 0

fi= i ot (x2) 0 @28)
1 20 0 (1+2)° 0

1 (1+2)7Q (1+2)70Q 0

where y=E,, / E, that is spin-splitting energy in the valence band, E;, and energy gap
between conduction and valence bands, Eg, respectively. The rows and columns
correspond to c-, vh-, vl- and vs-bands, with Q defined as

JLE MK

0= 29
3 E, 2mE,

By replacing the sum over the states with integral overde, =d (h’k’/2;¢0), where zis

the band-edge reduce effective mass for the pair of bands involved, the contribution
from the direct interband transitions (first order process) to the imaginary part of
permittivity can be written down as

2 2
= 2" e’E, o
0 3mh’ o’

pz,:)#;/zjdmlﬂnd (sk)[[ [q (& )]—f/ [51 (& )]:I&,. [AI, +£,(8,)-¢ (s:,,)—hw]

(4.30)

where A, =-A ,/is the energy gap between the i-th and j-th bands and sum of all the

bands is performed. Equation (4.30) is for electrons. For holes, it is transformed to
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23/192EI’ .
Koib =773 7 ey (4.31)
" 3mohlw2 (J=vivl v\)” Y
jds,s:”[ -1 [s ] 1.[e e,)]] [ (g)+e.(8)+E, hw]
for the interband transitions, with
Hey 1 K & 1
6"(5‘)=A“’+m;€“ e.(g)= 4—a§_+m—‘,l.a_:__a—r (4.32)

(+23)(1+2)+2'3 1

here nonparabolicity at I'-vall duction band,a, =
W] nonparabolicity at I'-valley conduction band,a. (+27/3(+7) E

B

and
2¢'E, .
wib =737 Hey % (4.33)
* 3moh’w? i)
Idgkglyzny (& )[.fw ()~ 1y (& )}5r [Ew (&)-. (&)~ hw]
0
for the intervalence band transitions, with
£, (c)=A, +22 ”fg, e, (5)=A,+22g, (@.34)
m

v

The energy gap, A, in equations (4.32) and (4.34) is nonzero for transitions involving
the split-off valence band, for whichA,, = E,,. Spontaneous emission is due to interband
transitions from the conduction to valence bands, rather than intervalence band
transitions. Then, the spectral density of this emission, which is defined as the intensity
of spontaneous emission per unit volume per unit photon energy interval is:

32,2 2
_2TeEn,0 32
ey

(4.35)

wsp ~ 2 333
3P m R ()

;[dsks,',“fv/ [EW (5 )] f. [e‘, (& )] 8 [s,/ (&) +&.(8,)+E, —hw]

423 Incorporating Many-Body Effects
Previous calculation does not include many-body effects (screened Coulomb interaction
and exchange-correlation interaction), except for intraband scattering (through energy

delta-function,dr). The Coulomb interaction between electron and hole modifies their
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states as well as near band edge interband transition. To solved this, first, excitonic
transition are included by adding the term

_21'¢’E,
wex 2 X
my»

\(ho-E, ho-
R e b

¢

(4.36)

(sj,, +E, -hw)
where y, and ¢, are the wave-function and energy of n-th heavy-hole (j=h) or light-

hole (j=I) excitonic state to the imaginary part of permittivity. Secondly, the screened

Coulomb potential is replaced with the model potential of the form

e [t:xp(i]lr/a,,m)—]:I_l

Ko ey

q)/(r)=—r] (4.37)
Here, r, x, and a,,, =K / yme’ are the radial coordinate, static permittivity and
effective Bohr radius, 7 is the fitting parameter, obtained by 7, = ay,, /6r_‘ where
-12
r = K"z igﬂ.,,lan (4.38)
b Vdre' | T 05 T, 06,

is the radius of screening. When nonparabolicity is neglected, it is reduces to

1

X, N, (T) A N, (1) INIE
= [— g —h J -2 4.39
1, ‘Wz[u_gt) T F_%[Q T‘]ﬁ,.hzm T EuéT (4.39)

c

While the excitonic effects are importance at low concentrations of free carriers, the
exchange-correlation interaction appears only at high carrier concentrations, resulting in
bandgap shrinkage (conduction band is lowered and valence band is raised). This

shifting of c- or v-band edge can be described by the local density functional method

and parameterized asV,., =V, (NJ ) , or in a form as [82]
Viey (N,)=0.0582{140.77347" (N, Jin[1m, (V) [}, (N )R, e (440)

where 7, =21[(4/3)7ra,’,'1N f ]m is the number of j-th band carriers in a spherical

volume with a radius equal to their effective Bohr radius, a,,=x,h’/me’, and
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R =¢ / (2x0a,,‘ ,)is the effective Rydberg constant in that band. Then, the bandgap

shrinkage is the sum of the conduction and valence band shifts [82],

AE, .. =V o (N)+V,eu (N,) (4.41)

4.2.4 Indirect Intraband Transitions

Calculation of indirect radiative transitions before is assumpted that photon energy is
above the energies of free carriers. Since the occupation numbers for the states at energy
equal to or higher than 7@+ hQ are small, it can be neglected, as well as second order
process with the photon emission. Regarding to free carrier process with the absorption

of photon, the imaginary part of permittivity can be reduced to

.o c 2 “de| 7, (s)
=SSN (T) = [ 222 4.42
Ko = 2N(T) "ij.{ | 7Ee) Zal (@42)
where 7,(¢) is the function of energy define by equation (4.23), o (&) is the cross-

section of phonon absorption by the i-th type of carriers with absorption or emission of

the j-th type phonon, obtaining by integrating over the phonon states written as

. 2¢? 1

q"mj‘” dqq hzq2 _ ml}/'/(‘g’) 7/( ) 71(5) x(q e)W’(q)
i (L) (2mri(e) | mri(e) 7,( RG] .

Here, & =¢—-A, +hw+hQ, is the carrier energy after transition with phonon “s” at

I (4.43)

wave-vector ¢ and energyhQ, , resulting in change of carrier type and energy
separation in the band structure A, =-A, fors;. Then, gy, and g, as limits of

integral in equation (4.31) are the lower and upper values wave-number given by

Goins = %["ijyj (sf) -2my, (5)],11:“,” = %[, '2m/71 (sf ) +2my, (g)] (4.44)
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G:(g,£) and W (g) in equation (4.32) are the squared overlap integrals of the Bloch
functions and matrix element for the unscreened electron-phonon interaction. If

nonparabolicity is neglected, the o7 (£) is reduces to

. 2¢? 1

O (S) = Ihe’ \/2—”’1—8)(
B o ) R A

v.‘.;..., (1 +q7r )2

In the high-frequency limit, the photon energy is far above the energies of electrons or

(4.45)

holes (thus not dependent on energy), resulting a simple relationship for a free

carrier contribution to the imaginary part of permittivity:

K22 Y NYE, (4.46)
€@y ()

where E, the characteristic cross-section of absorption given in [86] by the i-th carrier
with scattering by the s-th type phonon. This can be applied for impurity scattering with

the energy AQ, set to zero, as well as other types of scattering [86].

4.3 Quantum Well (QW) Calculation

In order to model QW, the bandstructure is calculated using KP perturbation theory.
QW is made by growing a thin layer of narrower bandgap semiconductor within a wider
bandgap semiconductor, where the inserted layers are thin enough to cause quantum
confinement of the carriers. The bandgap structure is shown in Figure 4.1(a). The
narrower bandgap layer is treated as potential wall for both the electrons and holes.

Active region may contain multi-QW as shown in Figure 4.1(b).

sz T —
= o | LA —

17
—— — ————
=

Figure 4.1: Schematic energy band diagram of a (a) QW and (b) MQW.
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The quantum subband structure is based on isolated square QW with parabolic band
approximation of Kane model. The single conduction band and three valence bands in
the Brillouin zone center are described by the wave function of the form [82]

v, (z.r)=w. (z)%g—)u‘(z,r) (4.47)

where z, r and k are the coordinate in the direction of growth, in-plane vector coordinate
and in-plahe wave-vector. i is the envelope function, # is the periodic cell function
and A is the area of QW. The wj function for the i-th band carrier is found by solving

the Schrodinger equation with the Ben Daniel-Duke Hamiltonian [82]:

nld 1 d nk?

_T[Zr(z)"d;]% (z)+{l/,(z)—ad(—z)—s,]y/‘k (z)=0 (4.48)
with m,(z)and m, (z)are the effective masses in the directions parallel and
perpendicular to the growth direction (associated with z-coordinate), V;(z) and & are the
potential and total energies of the i-th band carrier (from band edge in the well). For a

square QW, the potential energy profile is taken as

V,(z)=A9(-d,) (4.49)
where A, > 0is the barrier of i-th band carrier, d, is the half-width of QW and (x) is
the unitary step-function. Equation (4.48) is reduces to the continuity of y; and
(1/m,)x dy, [ dz with boundary conditions of heterojunction interfaces atz = +d, . Away

from QW, the boundary conditions depend on the bound (2D) or unbound (3D) state.

By introducing the kinetic energy of the motion in the plane of QW [82],

£ = (4.50)

il

where m,

Lo

stands for in-plane effective mass in the well layer. 2D and 3D states are
separated by inequalities [82]:

£, <€ <A+, 8, 2D states

(4.51)
& >A +¢,8,>¢, ,3D states
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Here, ¢, =m,,, /m,, <1 is well-to-barrier in-plane effective mass ratio (subscripts “w”
and “b” indicate the well and barrier). This ratio is less than unity since the well layer
has narrower bandgap compared to the barrier layer. The i-th band carrier at wave-

number k sees this effective mass mismatch as a reduction of the potential barrier by the

value(1-¢;, )&, . The 2D states are possible within the interval

0<ksd [PMuxds (4.52)

h\ 1-¢,

and obtained as the solutions of eq.(4.48) with boundary conditions away from QW:
w,(+0)=0. Due to a spatial symmetry of the potential,¥,(~z)=V,(z) the allowed
states are either even: v, (~z) =y, (z)or odd: y, (~z)=-v, (z)states. The total energy
of the band edge in well layer, & is given from the dispersion equations [82]:

¢.:(94/9.)=tan(q,) :even state
& (0/90)==cot(q,) :odd state

where ¢, and g, are the parameters defined as

(4.53)

G =d,[h\2m,, (5~ 5,)

v = dw/h\jzm;.-n (8 -5+, —¢4)

Altogether, there are J,, evenand J, ,, odd subbands,

(4.54)

T
(1 d,
S =lm(5 +E\/2'"..w (A, —(l'fl;)ﬂk]]

of each subband is different from a parabolic case,

R =l+int["; 2m,,,[A, —(1—4,1)6.‘]] (4.55)

The spectrum &,

g,(k)=E, +&, when the effective mass mismatch is considered. Subscripts "
indicates the number of subband in i-th band and E, =€, (0)>0 is the quantum

subband edge. There is always at least one even subband and the wider and deeper the

QW, the more number of quantum subbands it supports. However, no 2D states at all
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are possible ifs, >A,/(1-¢,,). Envelope functions of the 2D states in the isolated

square QW can be calculated using normalization

[V (2Ia (2)ee =6, @s6)
The quantum confinement factor I, (k) is given by

r,(k)= f o (2)f = 457

e a®f L a®T, [, a0, ,an]]
{‘ AT )[ c"qzw(k)] H‘ q,,,(k)[ Qq,,w(k)][‘ ‘. q:wm”

Here, g,, (k) and g,,(k) are the normalized wave-numbers in the well and barriers

obtained by replacing &, with &, (k) in the upper and lower of equation (4.54). Then,

the reduced density of states in the 2D subband, p, (k) is given by

P (K== i-(-¢, )[Hé q’”i,(g a (K )[1 :’Z,”:Ek;ﬂ— (4.58)

Bandgap shrinkage in a QW is due to the exchange-correlation interaction of free
carriers, similar in the bulk semiconductor. The approach is similar to equation (4.29). It
is assumed that this interaction shifts down the conduction band edge and shifts up the

valence band edges, seen as an increase in the barrier height given by

A (Nigy) =0 0582{1+o 77347 (N, Jin[ 1477, (N, oy )]} 1Ny )R, (4.59)
Here, N,y is the effective bulk concentration of the i-th band carriers in the well. With
the corrections due to the strain and exchange-correlation interaction, the barrier height
seen by the i-th band carrier is

A, =AE +A

+A (4.60)

i,str ixe

where AE; is the band offset at heterojunction in a QW.
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4.4 Strain Effect Calculation
In semiconductor lasers, strained layer forms the QWs in the active region.
Strain is due to the lattice mismatch between the epitaxial layers and substrate. Figure
4.2 shows a schematic interface of two materials (A and B) where the atoms are not
match properly and some left with incomplete bonds. The larger atoms in material A are
spaced apart, thus, atoms at the interface have three rather than the standard four crystal
bonds. These incomplete bonded atoms can degrade the electrical properties of the

device near the interface.

STRAINED

UNSTRAINED

o

Interface
]

[
S A
nef i
1
1
1

1

Figure 4.2: A schematic unstrained and strained-layer.

Semiconductor layers can accommodate the strain of lattice mismatch of more than
one percent without forming the misfit dislocations which degrade the performance. It
gives flexibility in selecting materials, enabling designing of devices not possible if
following strict lattice-matching requirements. New wavelength laser emission can also
be generated. Strain leads to renormalization of the energy bands. As a function of the
lattice constants of the strained crystal with respect to the reference unstrained material,

ayerenergy shifts due to shear forces is given by [85]

SE,,, =b| 14252 |2 % @61)
) Gy

and hydrostatic strain given by

a-a,,
a,

5E,,, =2a,, (1 - cﬁ) (4.62)
. € ref

occur as diagonal renormalizations in equation (4.18), where b is axial deformation

potential, a., is hydrostatic deformation potential, ¢;; and ¢;; are elastic stiffness
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constants. Within the parabolic band approximation, strain is assumed as band edge
shift. Considered the relative change in the lattice constant,s =(a—a,)/a,, where ao
and a are the lattice constants of the substrate and well. Assuming that the barriers are
lattice-matched to the substrate, the shift in the band edge in the well is seen as an
addition 4, to the barrier height, which is proportional to &. The expressions for these
parameters in the conduction, heavy hole and light hole bands follow from directly from
the Pikus-Bir Hamiltonian and can be written down as

A =24, (1 'Clz/cn)"‘s
By ==[24,+B-2(4,-B)C,/C, ]x6 (4.63)
A =—[2A, _B_Z(Av + B)Cu/cu:l’(J

where A4, A, and B are the deformation potentials for the conduction and valence bands,

Cyyand C); are the elastic constants.

4.5 Carrier Transport Calculation

The drift-diffusion system of equations which ists of carrier inuity
equations and Poisson equation are applied for carrier transport calculation. Lattice heat
equation is used to describe self-heating effects. As for transport across hetero-
interfaces, it is based on thermionic emission. A 2D device cross-section is rendered
with rectangular elements. A material system, alloy composition and doping are then
selected. The cross-section is digitized with a non-uniform (Delauney) mesh. The

transport equations are then solved using Gummel & Newton-Raphson Iteration [85].

4.5.1 Poisson Equation and Charges
The electric potential ® is determined by Poisson equation, where the charges are given
by the densities of electrons 7, and holes ny, g is the elementary charge, and ¢ is the

static dielectric permittivity based on the material parameter [85]
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VeV =q(n, +n,—Nj+N;) (4.64)

The ionized donors Np' and acceptors N, are defined by
N, - N,

Fg) 0 T E,-F,
1+g,,exp(’—k-7%’J 1+g, exp( ;c—T ”)
B B

The dopant degeneracy factors are typically g»=2 and g,=4. The activation energies for

+
Ny =

(4.65)

donors Ep and acceptors E4 are based on the material parameter. F. is the Fermi

energies for electrons and holes respectively.

4.5.2  Carrier Distribution and Wavefunctions

In QWs, the confinement potential leads to localized bound states, while propagating
states exist for energy higher than the barrier band edge. The propagating states are
based on classical approach for bulk regions. Quantum mechanical model is applied for
bound states. By using envelope function approximation [85], the spatial distribution of

carriers in the QW confined direction is described by wavefunctions y;

o ()=, O T, (8)5 () 4.66)

which are obtained by solving a 1D Schrédinger equation and assuming the growth

direction is in the y-axis:

n d?
—[—ZM F—Vum(y)]% »=Ew,(») (4.67)
elh

The bound carrier densities are determined by integrating over the occupation
probability as given by the Fermi distribution function f{E) and the density of states gary
for sub-band j, which results from the bandstructure calculation. m, are the electrons
and holes masses respectively. While the bulk masses are depending on the material
parameter, the masses for bound QW electrons and holes are determined from the
bandstructure KP calculation. The confinement potential for electrons and holes, Vs
consist offsets of conduction and valence bands as well as the electric potential. Carrier
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density dependent bandgap renormalizations that are derived from local density
approximation for the Coulomb self-energies are also included in the band edges. By
solving equation (4.67), sub-band energies E, for sub-band j, and the respective
wavefunctions are obtained. Finally, the total carrier concentrations is given by the sum
of carriers in bound states and propagating continuum states, ns=nes’"+ nes’". The
bound carriers are the sum over individual sub-band contributions. In bulk regions, the

carrier densities are related to the Fermi levels by

; m k0" | (£F,,FE, y +F,, T E.y
”:/’;=2[ 2;:,:; J F, /;uT i =N(grﬁ;/z _“/‘;‘”—_T c (4.68)

where Fy;; is the Fermi integral of order one-half, F.; are the Fermi energies of

electrons and holes, and Eyare the conduction and valence band edges.

4.5.3  Carrier Continuity Equations

In QW, separate continuity equations are solved for bound and continuum states to
describe incomplete capture of carriers. Figure 4.3 illustrates the transport model inside
the QW where A is bulk drift-diffusion current, B is transport into QW continuum
states, C is carrier capture and escape, D is non-radiative recombination from continuum
states and E is radiative (stimulated/spontaneous) and non-radiative recombination from

bound QW states [87].

Bulk Quantum Well Bulk
Comnuum g

A oS A,

————— - Bound States.

unuum ~E
3 S~y
Figure 4.3: Schematic illustration of the transport model [85].
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Capture due to carrier-carrier and carrier-phonon scattering will couple the classical
propagating bulk and QW continuum states to quantum confined bound states. For fast
inter sub-band scattering leading to thermalization between the sub-bands, the
occupation of the individual sub-band can be described by a common Fermi level. This
reduces the set of rate equations to a four level system defined by effective rates and

density of states, which are the sum of the sub-band contributions [85].

20
7 ongyy _ £VJ,,,, - gR" —gR"™ — qRmbod g Repe (4.69)
on?
q au[/h = £V, — qRY — gRY™ I _ g Rere (4.70)

where R&™" is the capture rates for electrons and holes, R“* is non-radiative

spon,bound

recombination rate, R’ and R7"%¥ are the spontaneous recombination rates for

bound and bulk carriers, R is the stimulated recombination rate. J.; and
J, describe the currents. For bound states, only carrier flux within the QW plane
indicated by ||is considered, since the carrier distribution in the growth direction is

determined by the wavefunctions within the confinement potential.

4.5.4  Quantum Well Carrier Capture
Capture into and escape from bound states is described by Maser equation rates [85] for
in- and out-scattering. The capture rate R&r™* = RS + Ry is the sum of

contributions due to carrier-carrier and carrier-phonon scattering.

R = [dE [dE" glh, (E)gli (E')x @)
(s (£, ) 125 (B)(1- 135 (B) s (B, )1 A28 (B)) £22 ()
Refpe = [dE [dE" g3 (E)gl (E')x @72)

(seemt (. ") (m +1) 125 (E) (1= 127 (E)) =i (B E Y m (1= 137 (E)) 137 (")
The scattering coefficients s<7"™'““7**/™ are assumed to depend on the occupation of

the involved states resulting from a quantum kinetic treatment of the scattering process
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in term of quantum Boltzmann equations. These scattering coefficients are given by
constant rates normalized by the final density of states [87]. Due to emission and
absorption of longitudinal optical (LO) phonons, capture due to phonon scattering
allows continuum states to interact with non-resonant bound states which is contrast to
Coulomb scattering process where the energy is conserved. The phonon occupation

number is given below where @0 is the LO phonon frequency [85].

-1
ho,
ny, =[exp[h—7§:)-1] (4.73)

4.5.5 Auger Recombination

The non-radiative recombination R“"* occurs in both bulk and QWs regions. The rate is
the sum of contributions due to Auger and Shockley-Read-Hall (SRH) processes. In the
Auger process, an electron and hole recombine with the energy is transferred to an
additional electron or hole. The Auger recombination is modeled by [85]

R4 = (%, + Cn, ) (mm, =) (.74
where n; is the intrinsic carrier density. The Auger coefficients are temperature
dependent, described below. The temperature dependent is characterized by activation
energy E/*"“"based on the material parameter.

cl (1) =l (300K)exp[—Ej’f“""“ (/‘”Lr-m]] @75)
4.5.6 Shockley-Read-Hall (SRH) Recombination

SRH process describes recombination through trap levels. The rate is modeled by [85]

2
RS — nn, —n

S (m,+nir )+ (m, 41 ) 476)

The lifetimes 7> and 73" for electrons and holes, and trap energy E, are based on
n r P

the material parameter with the trap occupations n.; are given by
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tE,  FE.,
= N:ﬂer.,z[’”‘,"(—T‘”J (4.77)

B

4.5.7 Interface Trap Recombination
Deep level trap can be associated with material interfaces. In the interface

recombination model, the interface recombination rate (per surface area) is given by

2
e nn,—n
Rl[flm -SRH = 1 e"'h (i 1 (478)
B wrop rap
ace=SRH ("e +n, )+ ace=SRil ("h +ny )
h 3
The interface recombination velocities v/ are based on the material parameter and
trap occupation is calculated using equation (4.77).
4.5.8 Spontaneous Recombination
Radiative recombination included spc yus and stimulated bination
p P

With Z(w) is the photon spectral density of states, the spontaneous recombination can be
written as [85]

Ryt = [doZ (0)u(o) 4.79)
where u is the spontaneous emission spectrum. In QWs, it can be derived from the
optical matrix element obtained from the bandstructure calculation. As in bulk regions
and for continuum states, an approximate expression is used that is

RY % = B(nn, ~n]) (4.80)

The Einstein coefficient B is based on material parameter.

4.5.9 Stimulated Recombination
Stimulated emission is the dominant radiative recombination above the laser threshold.
The stimulated recombination is given by contributions due to photon emission into

individual cavity modes (m, ») [85]. The g(w) is the gain spectrum.
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R =ZSM‘N|EM|2"Lg(a)) 4.81)
mo off m

4.5.10 Carrier Current and Mobility
The current densities J./ in the carrier continuity equation below are calculated within
the drift-diffusion theory where D, is the diffusivity, s is the mobility and P, is the
thermoelectric power of electrons and holes [85].

en =24,V + GHe MV Ec sy £ Gty Loy VT (4.82)
For Fermi statistics, the diffusivity is related to the carrier mobility through a

generalized Einstein relation [85]

D,, k F‘”[ k,T
Zeth BT N b/ (4.83)

The high-field mobility is written as a function of the low-field behavior and the electric

field for electrons and holes [85]

Hon = 13y (Eouilhy) (4.84)

4.5.11 Temperature Dependent Mobility
Temperature dependence is accounted using the expression below where the exponent

pemand g are based on material parameters for electrons and holes [85].

» T Yo
- L 4.85
Hein = Hoern (300[( J (4.85)

The temperature dependence is induced by increased phonon scattering for increased

temperature leading to exponents, and smaller than zero for most materials.
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4.5.12 Doping and Temperature Dependent Mobility Model
This doping and temperature dependent mobility was originally modeled for Silicon
devices and later developed to cover compound materials [88]. Due to impurity
scattering, the carrier mobility generally exhibits a dependence on the doping

concentration. The low-field mobility is given by [85]

N T\
T ]6”.1. . /’n.e/n(300K) ™ Hop.etn (%61()

00K olote)”

Hily = Hapern ( (4.86)

N,

[ S—
1 + 7‘ 5~I e
N —
" ‘””(3001()
where Nyop=N4+Np is the total doping concentration. The maximum mobility 4. and
its exponent for the temperature dependence are described before. For increasing

doping, the mobility approaches the minimum mobility fupen The temperature

d d of this mini mobility is characterized by exponents &pen The

P

reference doping density is Nyefes With its temperature dependence is described by the

exponent Sefe/h.

4.5.13 High Field Mobility
The high-field mobility accounts for velocity saturation effects of the carriers. The

model for the high-field behavior of the electron and hole mobility is given by [85]

i (E.ulh) (.87)
The saturation velocity vya,en for electron and hole are modeled using [85]
300K
Vowelh (T):M(__) (4.88)
st a,T
(1-ay )+

300K
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The temperature dependence coefficient a, and exponent f3. are based on material
parameter. In compound materials, electron mobility may exhibit a local maximum at

high electric field modeled below with field strength Eyr./ based on the material.

v
L
Hein+

PAINTAE (4.89)

4.5.14 Material Interfaces

While the electric potential is continuous at material interfaces, different physical
effects have to be considered for the carrier transport. Due to band discontinuities AE¢/y
electrons and holes might encounter an energy barrier. Carriers with kinetic energy
exceeding the barrier height are described by thermionic emission. The current is given

below with 4 and B indicating wide and narrow gap materials [85].

kam;, Foa=Eqy F,s—Eq,,—AE,.
J = KM | etna = Ecwa | ens = L cw 4.90
tndsh 2;:’&’[ XP[ 6T P k,T (490)

where m;,, is the carrier mass in the higher band edge material. As for carriers with
insufficient energy to cross the interface, it generates quantum mechanical tunneling. A
simple approach accounts for tunneling by reducing the barrier height as a function of
the electric field to reflect increased tunneling probability for increasing electric field
strength is given below With A is the effective tunneling length and Er'z_w,, is the
projection of the electric field onto the surface normal at the interface.

AE' .y =By =g max(O, Eﬁ.mrj ) (4.91)

4.5.15 Lattice Heat Flow Equation
A fraction of electronic energy may be transferred to the crystal lattice due to carrier-

phonon scattering, leading to lattice temperature increment. A lattice heat flow equation
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can be solved to describe self-heating effects as below. The C, =c¢, p is the lattice heat

capacity, which is the product of specific heat and material density.

3 or @
(c,_ +5kﬂ(n, +nh))5 =V(x,VT-S,-5,)+H (4.92)

4.5.16 Thermal Conductivity
The heat conductivity of the lattice have temperature dependence where the thermal

conductivity at 300 K and the exponent &, are based on the material as given by [85]

5.,
x,(T)=x, (3001()(&] 4.93)

4.5.17 Energy Flux

The electron and hole energy fluxes are given by [85]

Sein = :”':/;.T]m =K VT (4.94)
The thermal conductivities of the electron and hole gas are determined by [85]
Ko = Mok T HenPop (4.95)

4.5.18 Heat Sources

The sum of different heat source contributions, H in equation (4.92) is given as

H=H,, +H +H,

Joule transient

(4.96)

recombination

with the heat generation due to Joule heat H oz, recombination heat Hyecombination and an
additional heat production rate originating from the transient modulation of the carrier

concentration Hyansient €xpressed as [85]

H

Joule

= _é(Jew«; +J,VF,) (4.97)

H peombianon = (Fo =~ F,) R (4.98)
_p[ 9F on. +%.%] (4.99)
or or or ot

H,

transient =
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The sum of Peltier and Thomson heat as defined below is included in the convective

part of the energy fluxes in equation (4.64) [85].

H,, ==JTVP,-J,TVP, (4.100)

4.5.19 Thermal Boundary Conditions
Two different boundary conditions can be associated with the heat flow equation at the
electrodes contact. Firstly, it is treated as a reflective boundary and secondly, a Cauchy

type boundary condition is imposed at the contact as defined by [85]

(4.101)

- G,
K, AVT = %(T—Tmm)
where 7 is the surface normal at the contact, A4 is the contact surface area, Germar is the

heat conductance associated with the electrode and 7'conacr is the heat sink temperature.

4.6 Model for Spectral Broadening

Due to the intraband scattering, the electron and hole states during radiative
transitions are not stationary and hence their energies are not certain. Finite coherence
time of the states and uncertainty in the energy result in broadening of the spectral line.
This spectral broadening is included by replacing the energy-delta function for
transition probability from perturbation theory by following functions, which
approaches a delta-function as the coherence time increases to infinity [82]

8(E,—E ~ho)—>&.(E, ~E,~ho) (4.102)
Here, E; and Eyare the energies of initial and final states, hw is the photon energy and I
is the broadening parameter, related to the coherence time 7 of a pair of the states

involved in transition by I" = 27h/7 . In the limit of ' — 0, the broadened delta-function
can be approximated by Lorentzian function at|E, - E, —hw| <« I'. Instead of the energy

delta-function, the Lorentzian broadened delta-function is used, that is [82]
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/2

51-(51 -E, —h(t))=;—(Ef E, —ha))z +([‘/2)2

(4.103)

4.7 Model for Material Parameters

All of the material parameters employ in this modeling and simulation work are
based on reliable experimental data and from literature sources [64, 89-100, 115]. The
constants of the following materials GaAs, AlAs, AlGaAs, SiC, MgO, InGaAsP and InP

are available in reference [86] and [115] respectively.
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