

DEVELOPMENT OF A MULTIPLEX PCR IN THE RAPID DETECTION OF VIRULENCE-ASSOCIATED GENES IN Shigella spp.

SUSAN HOE LING LING

A DISSERTATION SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES, UNIVERSITY OF MALAYA, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

> INSTITUTE OF POSTGRADUATE STUDIES UNIVERSITY OF MALAYA KUALA LUMPUR MALAYSIA DECEMBER 2003

ABSTRACT

Current practice of culturing and isolating Shigella spp. from stool specimens in order to identify the specific bacterium agent responsible for bacillary dysentery or shigellosis by biochemical tests, has often met with limited success. In this study, a more rapid and specific means of identification had been demonstrated via a multiplex PCR (mPCR) for the simultaneous detection of both chromosomal- and plasmidencoded virulence-associated genes (set1A, set1B, ial and ipaH) and a monoplex PCR for the separate detection of sen gene. One hundred and ten strains of Malaysian Shigella spp. isolated from years 1997 to 2000 were tested. Boiling method was used to prepare DNA templates for PCRs. ipaH was present in all the local isolates, while both set1A and set1B, ial and sen were identified in 40.9%, 40.9% and 30.9% of the strains respectively. The tandem chromosomal genes of set1A and set1B were primarily detected in S. flexneri 2a strains, sen gene was found in all Shigella species except for S. sonnei and both ial and ipaH were more widespread in all four species. The two most frequent pathotype profiles shown were the presence of ipaH (34/110 strains) and the presence of set1B/set1A/ipaH (21/110 strains). Both the amplification assays were specific, as non-Shigella strains did not generate any desired PCR product. The average detection sensitivity limit of the mPCR in brain heart infusion (BHI)-preincubated S. flexneri 2a-spiked faeces was approximately 5.0 X 104 cfu/ml or 100 cfu of shigellae per mPCR reaction and is within the common infectious dose of at least 104 viable cells. Strains of Shigella spp., regardless of the location of the virulence-associated genes, could be rapidly detected in a single assay, hence hastening appropriate medical treatment of patients.

ABSTRAK

Pengkulturan and isolasi Shigella spp. pada masa kini dari spesimen tinja untuk identifikasi agen bakteria spesifik yang menyebabkan disentri basilari atau shigellosis, melalui ujian biokimia, selalunya mempunyai kejayaan terhad. Dalam kajian ini, cara yang lebih cepat and spesifik untuk identifikasi telah dibuktikan melalui tindakbalas rantaian polimeras multipleks (mPCR). Tindakbalas ini adalah untuk deteksi serentak gen-gen virulen (set1A, set1B, ial dan ipaH) yang dikodkan oleh kromosom serta oleh Deteksi gen sen dijalankan berasingan dalam satu tindakbalas rantaian polimeras monopleks. Sebanyak 110 stren Shigella spp. Malaysia yang diisolasi dari tahun 1997 hingga 2000 telah dikaji. Kaedah pendidihan digunakan bagi menyediakan templat DNA untuk PCR. ipaH hadir dalam semua isolasi, manakala kedua-dua set1A dan set1B, ial dan sen ditemui dalam 40.9%, 40.9% dan 30.9% daripada stren-stren masing-masing. Gen-gen kromosom tandem set1A dan set1B dikesan dalam stren S. flexneri 2a, gen sen pula dalam semua spesies Shigella kecuali S. sonnei dan kedua-dua ial dan ipaH adalah lebih meluas dalam keerapat-empat spesies. Profil patotip ("pathotype") yang paling kerap ditunjukkan ialah kehadiran ipaH (34/110 stren) dan kehadiran set1B/set1A/ipaH (21/110 stren). Kedua-dua esei amplifikasi adalah spesifik kerana stren bukan Shigella tidak mengenerasikan produk PCR yang dikehendaki, Purata had sensitiviti mPCR dalam tinja yang diinokulasi dengan S. flexneri 2a dan diinkubasi dalam brain heart infusion (BHI) adalah kira-kira 5.0 X 104 cfu/ml atau 100 cfu shigellae per mPCR. Ini adalah di dalam julat dos infeksi biasa shigellosis iaitu 104 sel yang hidup ("viable"). Stren-stren Shigella spp. tidak kira lokasi gen virulennya, boleh dikesan dengan cepat dalam satu esei supaya pemberian ubat yang bersesuajan boleh dipercepatkan.

ACKNOWLEDGEMENT

I would like to extend my utmost gratitude to my supervisor, Associate Professor Dr. Thong Kwai Lin for the opportunity to work in her laboratory and for her advices throughout the duration of my project, to Professor Dr. S. D. Puthucheary (Faculty of Medicine, UM) for the clinical specimens and to Mr. Koh Tin Yee (IMR) for the bacterial strains.

My deepest appreciation to those wonderful friends in Lab A407: Gowri for her much-tested patience in teaching me PCR technique and answering my never-ending and at times, frustrating queries; Chee Hong for his *Shigella* stabs and introduction to microbiological methods; Sleman and Yee Ling for letting me pick their brains on technical skills and lab-related matters; Kin Seng, Chee Mun, Hawk Leong, Shila, Sui Mae and Swee Seong for your kind support (physical and verbal) and suggestions whenever I needed them. "Thanks very very much for being who you are – caring, supportive and sporting buddies."

Many thanks to my coursemates in MBiotech. programme: Anil Azura, Emida, Melika, Shamini, Premila and Shila for all those memorable times together during our coursework semesters and for lending me their ears to my endless woes.

Pa, Mi, Nah and Boy, no words of thanks are ever enough for your unwavering support, care and prayers in this latest adventure of my life.

TABLE OF CONTENTS

TITLE	i
ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	x
LIST OF SYMBOLS AND ABBREVIATIONS	xii
CHAPTER 1: INTRODUCTION	
1.1 The genus Shigella 1.2 Clinical manifestation 1.3 Epidemiology 1.4 Pathogenesis and virulence-associated factors 1.4.1 Pathogenesis 1.4.2 Virulence-associated factors 1.4.2.1 Plasmid-encoded 1.4.2.2 Chromosomal-encoded 1.4.2.2 Phasmid-incoded 1.4.2.3 Pathogenicity islands 1.5 Laboratory diagnosis 1.5.1 Culture examination 1.5.2 Biochemical identification	1 2 3 4 7 9 10
1.5.3 Serotyping 1.6 Polymerase chain reaction (PCR) 1.6.1 The PCR process 1.6.1.1 DNA denaturation 1.6.1.2 Annealing of primer to target 1.6.1.3 Extension of target sequences 1.6.2 Types of PCR-based amplification techniques 1.6.3 Applications of PCR in the study of Shigella spp. 1.7 Multiplex PCR 1.7.1 Reaction components	12 13 14 14 14 17 18
1.7.1.1 Oligonucleotide primers 1.7.1.2 PCR buffer 1.7.1.3 Magnesium chloride 1.7.1.4 Deoxynucleotides 1.7.1.5 Taq DNA polymerase concentration 1.7.1.6 PCR additives 1.7.1.7 DNA template 1.7.1.8 Oil overlay	20 21 21 22 22 24 24 24 25

	1.7.2	Reaction conditions	
		1.7.2.1 Denaturation	26
		1.7.2.2 Annealing	26
		1.7.2.3 Extension	27
		1.7.2.4 Number of cycles	27
		1.7.2.5 Automation	27
	1.7.3	Contamination of mPCR	28
		Applications	31
		tment and prevention	51
		Treatment	31
		Prevention	33
		onale for study	34
		ctives of study	35
CHAPTER 2:	MATER	IALS AND METHODOLOGY	
	2.1 Mate		
	2.1.1	Bacterial strains	36
		Clinical specimens	36
		Chemicals	36
	2.1.4	Media for bacteria growth	
		2.1.4.1 Luria-Bertani (LB) broth	38
		2.1.4.2 LB agar	38
	2.1.5	Medium for bacteria enrichment	
		2.1.5.1 Brain Heart Infusion (BHI)	38
	2.1.6	Media for bacteria selection	
		2.1.6.1 MacConkey agar	39
		2.1.6.2 Salmonella Shigella (SS) agar	39
	2.1.7		
		2.1.7.1 0.5M EDTA, pH 8.0	39
		2.1.7.2 0.15M NaCl, 0.1M EDTA, pH 8.0	40
		2.1.7.3 1M Tris-HCl, pH 8.0	40
		2.1.7.4 Lysis buffer (1% SDS, 0.1M NaCl,	
		0.1M Tris-HCl, pH 8.0)	40
		2.1.7.5 5M sodium perchlorate	40
		2.1.7.6 RNase A (10 mg/ml)	40
	2.1.8		
		visualization	
		2.1.8.1 10X Tris-borate EDTA (TBE) buffer	41
		2.1.8.2 2% agarose gel	41
	210	2.1.8.3 Ethidium bromide (10 mg/ml)	41
		Oligonucleotide primers	42
	2.2 Metho 2.2.1		
	2.2.1		
		2.2.1.1 Moist heat 2.2.1.2 Membrane sterilization	43
			43
	2.2.2	2.2.1.3 UV irradiation	43
	2.2.2		
		2.2.2.1 Boiling	45
		2.2.2.2 Phenol-chloroform extraction	45

		2.2.3	Polymerase chain reaction (PCR)	
			2.2.3.1 Optimization of monoplex PCR	46
			2.2.3.2 Optimization of multiplex PCR (mPCR)	48
			2.2.3.3 Purification of PCR products	49
			2.2.3.4 Sequencing	50
			2.2.3.5 Reproducibility	50
			2.2.3.6 Specificity	50
			2.2.3.7 Sensitivity	51
			2.2.3.8 Faecal-spiking and sensitivity	51
			2.2.3.9 Screening of clinical specimens	52
			2.2.3.10 Agarose gel electrophoresis	52
			2.2.3.11 Gel visualization and documentation	53
	2.3	Data a	nalyses	53
CHAPTER 3:	RE	SULTS		
			rison of DNA extraction methods	55
			zation of monoplex PCRs	57
	3.3	Optimi	zation of multiplex PCR (mPCR)	58
		3.3.1	Different primer concentrations	59
		3.3.2	Different buffer concentrations	61
		3.3.3	Different annealing temperatures	62
		3.3.4	Different Taq DNA polymerase concentrations	63
		3.3.5	Different dNTPs concentrations	64
	3.4	Sequen	cing	66
	3.5	Reprod	ucibility	68
	3.6	Specifi	city	69
	3.7	Sensiti	vity	70
	3.8	Faecal-	spiking and sensitivity	71
	3.9	Prevale	nce of virulence-associated genes in	
		Malays	ian strains	72
			Distribution of virulence-associated genes	
			according to species and serotype	74
			Distribution of virulence-associated genes	
			according to year of isolation	76
			Analysis of the profiles of virulence markers	
			(pathotypes) in Malaysian Shigella spp.	78
	3.10	Clinica)	l specimens	79
CHAPTER 4:	DIS	CUSSI	ON	
	4.1	Genera		80
			rison of DNA extraction methods	81
			zation processes	01
			Monoplex PCR	83
			Multiplex PCR (mPCR)	85
		Sequen		89
			ucibility	91
		Specific		91
		Sensitiv		92
			spiking and sensitivity	93

	4.9 Preval	ence of virulence-associated genes in	
	Malay	sian strains	97
	4.9.1	Overall prevalence of virulence-associated genes	98
	4.9.2	Distribution of virulence-associated genes	
		according to species and serotype	99
	4.9.3	Distribution of virulence-associated genes	
		according to year of isolation	102
	4.9.4	Analysis of the profiles of virulence markers	
		(pathotypes) in Malaysian Shigella spp.	103
	4.10Clinica	al specimens	104
4.11Implications of this study			
4	4.12Limita	tions of the present study	106
CHAPTER 5: 0	CONCLU	SION	107
		•	
BIBLIOGRAPHY			109
APPENDIX 1:	DETAILS	OF THE 110 MALAYSIAN Shigella STRAINS	
ι	USED IN	THIS STUDY	122
APPENDIX 2: S	STANDAF	RD NUCLEOTIDE-NUCLEOTIDE	
I	BLAST SE	CARCH RESULTS	127

LIST OF FIGURES

	litle	page
Fig 1.1	Entry and dissemination of Shigella in epithelial cells in vitro	6
Fig 1.2	Polymerase chain reaction (PCR)	16
Fig 2.1	General experimental steps	44
Fig 3.1	Amplicons generated from DNAs prepared by the boiling and	
	phenol-chloroform extraction methods	56
Fig 3.2	Optimized monoplex PCR and mPCR	57
Fig 3.3	Amplicons generated by a combination of 5 primer sets at an	
	equimolar concentration of 0.5 μM each in mPCR	58
Fig 3.4	Optimization of primer concentrations in mPCR	59
Fig 3.5	Further optimization of primer concentrations in mPCR	60
Fig 3.6	Optimization of buffer concentration in mPCR	61
Fig 3.7	Optimization of annealing temperature in mPCR	62
Fig 3.8	Optimization of $\it Taq$ DNA polymerase concentration in mPCR	63
Fig 3.9	Optimization of dNTPs concentration in mPCR	64
Fig 3.10	Polymorphic site(s) within the virulence-associated genes in	
	Shigella spp.	67
Fig 3.11	Specificity results of mPCR and monoplex PCR	69
Fig 3.12	Sensitivity result of mPCR assay by using DNA templates from	
	bacterial culture at different dilutions	70
Fig 3.13	Faecal-spiking and sensitivity result of mPCR	
	(without additional BHI)	71
Fig 3.14	Faecal-spiking and sensitivity result of mPCR	
	(with additional BHI)	72

LIST OF TABLES

	<u>Title</u>	page
Table 1.1	Selected biochemical reactions of typical Shigella isolates	12
Table 1.2	Examples of various PCR-based amplification techniques in	
	the detection of microorganisms or specific genes	18
Table 1.3	Examples of mPCR applications	31
Table 2.1	Chemicals and reagents used in this study	37
Table 2.2	Primer sets used for identification of virulence-associated genes	
	in Shigella spp.	42
Table 2.3	Reaction mixture for the optimization of monoplex PCR	47
Table 2.4	Reaction mixture for the initial attempts of mPCR optimization	
	(incorporating 10 primers)	48
Table 2.5	Reaction mixture for the optimization of mPCR	
	(incorporating 8 primers)	49
Table 3.1	Prevalence of virulence-associated genes in DNAs prepared by	
	the boiling and phenol-chloroform extraction methods	56
Table 3.2	Reproducibility of amplification results	68
Table 3.3	Prevalence of all the virulence-associated genes in Malaysian	
	Shigella spp.	73
Table 3.4	Paired samples t-test results	74
Table 3.5	Prevalence of virulence-associated genes according to species	75
Table 3.6	Chi-square test results for the determination of a significant	
	association between the prevalence of virulence-associated	
	genes and S. flexneri 2a serotype	76
Table 3.7	Prevalence of virulence-associated genes according to	
	year of isolation	77

	<u>Title</u>	pag
Table 3.8	Comparison of prevalence of ial and sen with year of isolation	78
Table 3.9	Pathotypes of Shigella spp. based on the presence of	
	virulence-associated genes	79

LIST OF SYMBOLS AND ABBREVIATIONS

~ approximately

chi-square

 χ^2

⁰C degrees Celsius

= equals to

< less than

> more than

μl microlitre

μg microgram

μM micromolar

% percent

α significance level

Ha alternative hypothesis

H_o null hypothesis

A adenine

ATCC American Type Culture Collection

bp base pair

BHI Brain Heart Infusion

cm centimetre

cfu colony forming unit

cfu/ml colony forming unit per millimeter

C cytosine

DNA deoxyribonucleic acid

dNTP deoxynucleotide

dH₂O distilled water

ddH2O deionizied distilled water

EDTA ethylenediaminetetraacetic acid

EIEC enteroinvasive Escherichia coli

Fig Figure

g gram

G guanine

h hour

IMR Institute for Medical Research

ial invasion-associated locus

ipa invasion plasmid antigen

kb kilobase

kDa kiloDalton

LB Luria-Bertani

MgCl₂ magnesium chloride

M molar

min minute

mM millimolar

ml millilitre

mm

nm

mPCR multiplex PCR

NaCl sodium chloride

Ng nanogram

PAI pathogenicity island

PCR polymerase chain reaction

PCR-ELISA PCR-enzyme-linked immunosorbent assay

nanometre

millimetre

PCR-SSCP PCR-single-strand conformation polymorphism

p.s.i pound per square inch

p probability

RNase ribonuclease

rRNA ribosomal ribonucleic acid

rpm revolutions per minute

SDS sodium dodecyl sulphate

sec second

SS Salmonella-Shigella

T thymine

TBE Tris-borate-EDTA

Tris Tris(hydroxymethyl) methylamine

Tris-HCl Tris-hydrochloric acid

UV ultraviolet

U unit

V volt

w/v weight per unit volume

WHO World Health Organization

XLD xylose lysine deoxycholate