PREPARATION AND CHARACTERIZATION OF LITHIATED CATHODE MATERIALS FOR LITHIUM BATTERIES

BY SHANTI NAVARATNAM

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF TECHNOLOGY (MATERIALS SCIENCE) AT THE INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH.

UNIVERSITY OF MALAYA KUALA LUMPUR. 2001

Pernustakaan Universiti Malava

Acknowledgements

First and foremost, I would like to express my gratitude and appreciation to my supervisor, Associate Professor Dr. Abdul Kariem Arof for his guidance, encouragement and advice given to me throughout the project.

I wish to thank my co-supervisor Dr. Yatimah Alias for her help and advice. A special word of thanks to Dr. Wan Jeffrey Basirun for his guidance and advice using the cyclic voltammetry BAS instrument.

I also, would like to express my appreciation and thanks to the Lab. Assistants of the Geology Lab, IR Lab and Environmental Science Lab.

In addition, I would also like to thank my friends of Materials Science Course and at the Materials Science Lab, for their help and support.

To my husband Siva and my children Ashwin and Ishani - a very big thank you for your heartfelt love and enduring patience. Thanks is also due to Merlina for her understanding and kind help. To my mother - thank you for the thoughtful reminders and words of encouragement.

Abstract

Four different cathode materials, LiNiO₂, LiCoO₂, LiCoO₂, Ni_{0,8}O₂ and LiCoO₄, Ni_{0,6}O₂ were synthesized by sol - gel technique. The prepared materials were characterized using X-ray diffraction pattern, FT-IR and cyclic voltammetry. X-ray diffraction pattern shows crystallinity of materials, increases with higher calcination temperature. From FT- IR studies, it was shown, that the purity of sample also increased with prolong heating at higher temperatures. It was possible to obtain pure and highly crystalline LiNiO₂ after heating for fourteen hours at 800°C. Cyclic voltammetry shows the four prepared materials are suitable for fabrication of cathode, as lithium ions can intercalate and de-intercalate. LiNiO₂ was used in battery fabrication. Charge / discharee characteristic curve was obtained.

CONTENTS

Acknowledgements			i
Abstract			
Cha	pter 1	Introduction	
1.1	Introd	uction	1
1.2	Proble	ems encountered on developing an efficient Li-ion battery	2
1.3	Objec	tive of this research	5
Cha	apter 2	Literature Review	
2.1	Electr	ochemical Power Sources or Batteries	7
2.2	Opera	tion of a cell	9
	2.2.1	Discharge	9
	2.2.2 Charge		
2.3	Batteries		11
	2.3.1	Primary Cells or Batteries	11
	2.3.2	Secondary or Rechargeable cells or Batteries	12
2.4 Why lithium batteries?		14	
2.5	Lithiu	m Batteries	16
	2.5.1	Lithium Primary Batteries	16
	2.5.2	Lithium Secondary Batteries	17
	2.5.3	Lithium Ion Batteries or Rocking Chair Batteries	18

2.6	Interca	lation	19
	2.6.1	Model Scheme of Lithium Intercalation into graphitized	21
		carbon	
	2.6.2	Requirements of Insertion Electrode Material	23
	2.6.3	Why 3d - transition metal oxides are preferred as	24
		intercalation materials	
2.7	Electro	ode Materials	28
	2.7.1	Anode Materials	28
	2.7.2	Cathode Materials	29
	2.7.2(a) Lithium Manganese Oxides	30
	2.7.2(b) Layered Lithium Metal Oxides	31
2.8	Therm	odynamic determining factors of the positive electrode	37
	poten	tial of lithium batteries	
	2.8.1	The thermodynamic determining factors in the ternary	39
		Li - M - O	
2.9	Soft C	Chemistry synthesis of LiMO ₂	41
Ch	apter 3	Experimental	
3.1	Metho	d of sample preparation	44
3.2	Fourier	Transform Infrared Spectroscopy (FT-IR)	46
3.3	X-ray I	Diffraction	48
3.4	Cyclic	Voltammetry	53
3.5	Battery	Fabrication	57

Chapter 4 Results and Discussion

4.1	Fourier Transform Infrared Spectroscopy (FT-IR)	61
4.2	X-ray diffraction	79
4.3	Cyclic Voltammetry	89
4.4	Battery performance	105

Chapter 5 Conclusion and Suggestions for future work

5.1	Conclusion	108
	•	
5.2	Suggestions for future work	109

110

References