PRODUCTION OF POLYHYDROXYALKANOATE (PHA) FROM PALM OIL BY
Pseudomonas oleovorans AND AN INDIGENOUS BACTERIAL ISOLATE,
Pseudomonas sp.

BY
ZAZALI ALIAS

A dissertation submitted in partial fulfilment for the Degree of
Master of Biotechnology
at the
Institute of Postgraduate Studies and Research
University of Malaya
Kuala Lumpur
PRODUCTION OF POLYHYDROXYALKANOATE (PHA) FROM PALM OIL BY
Pseudomonas oleovorans AND AN INDIGENOUS BACTERIAL ISOLATE,
Pseudomonas sp.

BY
ZAZALI ALIAS

A dissertation submitted in partial fulfilment for the Degree of
Master of Biotechnology
at the
Institute of Postgraduate Studies and Research
University of Malaya
Kuala Lumpur
ACKNOWLEDGEMENT

Dengan nama ALLAH yang Maha Pemurah lagi Maha Penyayang

Setinggi-tinggi ribuan terimakasih diucapkan kepada Dr. Irene K.P. Tan yang telah memberi kepercayaan, pendedahan serta tunjuk ajar yang berharga disepanjang waktu kursus. Begitu juga, Profesor K.B. Ramachandran, yang telah membantu memudahkan perjalanan penyelidikan dengan sumbangan pandangan yang membina.

Terima kasih juga diucapkan kepada teman sekerja, Pian, Ho dan Shaza; sokongan moral, buah fikiran serta tunjuk ajar anda semua adalah sangat disanjungi. Begitu juga, En. Karim, yang telah membantu melicinkan penggunaan peralatan makmal.

Keluarga tercinta; emak, Ina, kakak, Emy dan terutamanya arwah ayah, anda semua adalah inspirasi untuk menjadi lebih cekal mengejar cita-cita dan kejayaan. Terimakasih yang mendalam diatas segala pengorbanan yang telah diberikan. Begitu juga buat tunang tersayang, Elly, diatas segala sokongan dan galakan.

Buat akhirnya, terimakasih juga, kepada pihak IRPA, UM, yang membantu dari segi kewangan dalam menjayakan projek ini.

Sekian

Zazali Alias
ABSTRACT

In this study, the yield of biomass and polyhydroxyalkanoate (PHA) of *Pseudomonas oleovorans* grown in batch and fed-batch cultivations were compared. When oleic acid (OA) (0.5% w/v) was used as carbon source, a significant increase in biomass and PHA content were observed through fed-batch cultivation. The biomass and PHA content obtained from batch cultivation were 1.45 ± 0.19 g/l and 2.50 ± 0.77 % cell dry weight (CDW) respectively, while in the fed-batch cultivation, the biomass and PHA content increased significantly to 3.35 ± 0.78 g/l and 32.72 ± 0.30 %CDW respectively.

When saponified palm olein (SPO) (0.5% w/v) was used as a carbon source, the batch cultivation yielded 1.54 ± 0.03 g/l biomass and 3.40 ± 0.76 %CDW of PHA. In the fed-batch cultivation, there was no significant increase in biomass yield (1.9 ± 0.66 g/l) but there was a significant increase in PHA content (14.46 ± 1.18 %CDW).

In the batch cultivation, yield of PHA ($Y_{p/s}$), from OA and SPO were 8.05 mg/g and 10.47 mg/g respectively. The polymer obtained when either OA or SPO was used as a carbon source was a medium chain length PHA (MCL-PHA) with hydroxyoctanoic acid (C_8) being the major monomer.

Palm oil-mill effluent (POME) was chosen as the source to isolate and screen bacteria capable of utilising palm oil directly for growth and PHA accumulation. Bacterial isolates were screened by using Sudan Black B and Nile Blue A staining.
Out of 45 isolates, none was capable of utilising palm oil directly for growth. Isolate X4.13 was however, able to grow and accumulate PHA from SPO. When isolation was carried out by an enrichment technique, one isolate, FLP1, was found to be able to grow and accumulate PHA directly from crude palm oil, palm olein, palm stearin, palm kernel oil and oleic acid. The superior isolate was identified as *Pseudomonas* sp. The PHA was then analysed to be polyhydroxybutyrate (PHB), a short chain length PHA (SCL\textsubscript{PHA}).

Thus, palm oil appears to be a suitable carbon source which could be converted to MCL\textsubscript{PHA} as well as SCL\textsubscript{PHA} depending on the bacteria metabolising the oil.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF COMMON ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1: OBJECTIVE OF THE PROJECT</td>
<td></td>
</tr>
<tr>
<td>1.1 General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objective</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Microbial Polyester</td>
<td>4</td>
</tr>
<tr>
<td>2.2 PHA from Pseudomonads</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Triglycerides as Carbon Substrate</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Fed-Batch Culture Feeding Strategies</td>
<td>15</td>
</tr>
</tbody>
</table>
CHAPTER 3: MATERIALS AND METHODS

3.1 Sampling Site for Isolating Indigenous Bacteria 19
3.2 Isolation of Bacterial Strains 19
3.3 Screening for PHA-producing Bacteria 19
3.4 Isolation through Enrichment 20
3.5 Identification of Isolate 21
3.6 Bacterial Strain Information 21
3.7 Carbon Substrates 21
3.8 Fermentation 22
 3.8.1 Seed Medium 22
 3.8.2 Cultivation Conditions 22
 3.8.3 Method for Fed-Batch Culture 23
3.9 Saponification of Palm Olein (PO) 24
3.10 Culture Broth Analysis 24
 3.10.1 Ammonium 25
 3.10.2 Fatty Acids 25
 3.10.3 Viable Cell Count 25
 3.10.4 Optical Density 26
 3.10.5 Cell Dry Weight (CDW) Determination 26
3.11 PHA Extraction 27
3.12 PHA Analysis

3.12.1 Nuclear Magnetic Resonance (NMR) 28

3.12.2 Infrared (IR) Spectrometry 28

3.12.3 Gas Chromatography (GC) 28

3.12.3.1 Preparation of Sample 28

3.12.3.2 Quantitative Determination of Polymer Composition 29

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Comparison Between Batch and Fed-Batch Cultivations of P. oleovorans 32

4.1.1 OA as the Carbon Substrate 32

4.1.2 SPO as the Carbon Substrate 37

4.2 Analysis of PHA Extracted from P. oleovorans 42

4.2.1 IR Analysis 43

4.2.2 ¹H NMR Analysis 45

4.2.3 ¹³C NMR Analysis 45

4.2.4 GC Analysis 50

4.3 Isolation and Screening of Isolates from POME 60

4.4 Isolation by Enrichment 64

4.5 Biomass, PHA Content and Monomer Composition of the Isolates 67
CHAPTER 5 : CONCLUSIONS

5.1 Conclusion 78

REFERENCES 83

APPENDICES

APPENDIX A-Medium Preparation

A.1 Nutrient Agar 96
A.2 Nutrient Rich Medium 96
A.3 E2 Medium 96
A.4 Isolation Medium A 96
A.5 Isolation Medium B 97

APPENDIX B-Stain Preparation

B.1 Sudan Black B
B.1.1 Material 97
B.1.2 Procedure 97
B.2 Nile Blue A
B.2.1 Material 98
B.2.2 Procedure 98
B.3 Gram Staining

B.3.1 Material 99

B.3.2 Procedure 99

APPENDIX C - Analytical Standard

C.1 Determination of Ammonium Content by Phenolhypochlorite Method

C.1.1 Material 100

C.1.2 Ammonium Standard Graph 100

C.2 Determination of Fatty Acids Content by Titration

C.2.1 Material 101

C.2.2 Fatty Acids Standard Graph 101
LIST OF TABLES

Table 1: Fatty Acids composition (%) of Palm Kernel Oil, Palm Oil, Palm Stearin and Palm Olein (Iftikar, PORIM, 1984).

Table 2: Optical Density (660nm) of *P. oleovorans* grown on OA in batch and fed-batch systems.

Table 3: Viable cell count of *P. oleovorans* grown on SPO in batch and fed-batch systems.

Table 4: Data on the change of ammonium content of the cultures during 48 hours of cultivation in batch and fed-batch systems when *P. oleovorans* was cultivated on OA or SPO.

Table 5: Comparison of biomass yield and PHA content obtained from batch and fed-batch systems when *P. oleovorans* was cultivated on OA or SPO.

Table 6: Monomer composition of PHA extracted from *P. oleovorans* cultivated on OA or SPO. Results show the average mole % (n=2) as determined by gas chromatography of the \(\beta \)-hydroxyalkanoate methyl esters obtained by acid hydrolysis of the PHA polymers.

Table 7: Biomass yield, PHA content and monomer composition obtained from isolates FLP1 and FLP2 cultured in different carbon sources.

Table 8: Chemical shift assignments for \(^{13} \)C resonance of PHB extracted from isolates FLP1 and FLP2 grown on different carbon sources.

Table 9: Chemical shift assignments for \(^{1} \)H resonance of PHB extracted from isolates FLP1 and FLP2 grown on different carbon sources.

Table 10: Ammonium concentrations vs optical density (OD) 640nm. Data for standard graph.

Table 11: Palmitic acid concentrations vs volume of titrated NaOH. Data for standard graph.
LIST OF FIGURES

Figure 1: Chemical structure of poly-β-hydroxyalkanoate (Adapted from Doi, Y. 1990). 5

Figure 2: Biosynthetic pathway of poly-β-hydroxybutyrate (Adapted from Griffin, 1994). 7

Figure 3: Biosynthetic pathway of poly-β-hydroxyalkanoate through β-oxidation (Adapted from Eggink et al., 1993). 10

Figure 4: Optical density and ammonium content of cultures of P. oleovorans grown on OA. 35

Figure 5: Viable cell count and ammonium content of cultures of P. oleovorans grown on SPO. 39

Figure 6: IR spectrum of PHA extracted from P. oleovorans grown on (A) OA and (B) SPO. 44

Figure 7: The 1H NMR spectrum of PHA extracted from P. oleovorans grown on OA. 46

Figure 8: The 1H NMR spectrum of PHA extracted from P. oleovorans grown on SPO. 47

Figure 9: The 13C NMR spectrum of PHA extracted from P. oleovorans grown on OA. 48

Figure 10: The 13C NMR spectrum of PHA extracted from P. oleovorans grown on SPO. 49

Figure 11: The GC chromatogram of polyhydroxyalkanoic acid methyl ester Standards. Benzoic acid methyl ester is the internal standard (0.1% v/v). 52

Figure 12: Standard graph for retention time vs carbon number of 3-hydroxyalkanoate methyl ester. 53
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Standard graph for response factor vs concentration of methyl esters of 3-hydroxyalkanoates (C8,C10,C12,C14,C16).</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>Standard graph for response factor vs carbon number of 3-hydroxyalkanoate methyl ester of different concentrations.</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>Standard graph for response factor vs concentration of methyl esters of 3-hydroxyalkanoates (C4,C6).</td>
<td>56</td>
</tr>
<tr>
<td>16</td>
<td>The GC chromatogram of the PHA composition accumulated by P. oleovorans grown on OA.</td>
<td>57</td>
</tr>
<tr>
<td>17</td>
<td>The GC chromatogram of the PHA composition accumulated by P. oleovorans grown on SPO.</td>
<td>58</td>
</tr>
<tr>
<td>18</td>
<td>The 13C NMR spectrum of PHA extracted from isolate FLP1 grown on palm olein.</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>The 1H NMR spectrum of PHA extracted from isolate FLP1 grown on palm olein.</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>The GC chromatogram of the (A) PHA extracted from isolate FLP1 grown on palm olein and (B) standard 3-hydroxybutyric acid methyl ester.</td>
<td>74</td>
</tr>
<tr>
<td>21</td>
<td>Data from BIOLOG shows the isolate FLP1 resembles Burkholderia cepacia (Pseudomonas cepacia) at 80% Similarity.</td>
<td>77</td>
</tr>
<tr>
<td>22</td>
<td>Standard graph for ammonium nitrogen.</td>
<td>103</td>
</tr>
<tr>
<td>23</td>
<td>Standard graph for fatty acid.</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF PLATES

Plate 1: An isolate (48 hours culture) negatively-stained with Sudan Black B (400X magnification). 62

Plate 2: An isolate (48 hours culture) positively-stained with Sudan Black B (400X magnification). 62

Plate 3: An isolate (48 hours culture) positively-stained with Nile Blue A (400X magnification). PHA granules appear fluorescent orange. 65

Plate 4: Observation of growth based on change in turbidity and colour of culture broth at 48 hours of cultivation in E2 medium (1% w/v PO).
(A) Sterile medium (B) Pseudomonas oleovorans (C) Isolate FLP1 (D) Isolate FLP2. 66
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>CDW</td>
<td>cell dry weight</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>CoASH</td>
<td>free coenzyme A</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>FAO</td>
<td>fatty acid oxidative enzyme</td>
</tr>
<tr>
<td>g/l</td>
<td>gram per litre</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>IR</td>
<td>infra red</td>
</tr>
<tr>
<td>LCFA</td>
<td>long chain fatty acid</td>
</tr>
<tr>
<td>LCL</td>
<td>long chain length</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>MCFA</td>
<td>medium chain fatty acid</td>
</tr>
<tr>
<td>MCL</td>
<td>medium chain length</td>
</tr>
<tr>
<td>NA</td>
<td>nutrient agar</td>
</tr>
<tr>
<td>NADP</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OA</td>
<td>oleic acid</td>
</tr>
</tbody>
</table>
OD optical density
P(3HB) poly-3-hydroxybutyric acid
P(3HV) poly-3-hydroxyvaleric acid
PHA polyhydroxyalkanoate
PHB polyhydroxybutyrate
PKO palm kernel oil
PO palm olein
POME palm oil-mill effluent
r.p.m. rotation per minute
RF response factor
SCFA short chain fatty acid
SCL short chain length
SD standard deviation
SPKO saponified palm kernel oil
SPO saponified palm olein
TCA tricarboxylic acid
v/v volume per volume
w/v weight per volume