STUDIES OF NICKEL REMOVAL
FROM ELECTROPLATING WASTEWATERS

BY

MD. SHAMEEM HASAN

SUPERVISED

BY

PROF. MOHD ALI HASHIM
ASSOC. PROF. DR. BHASKAR SEN GUPTA

DISSE TRATION SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH UNIVERSITY OF MALAYA 50603, KUALA LUMPUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY (ENV. MANAGEMENT)
Acknowledgements

First of all, I wish to express my sincere gratitude to my supervisors, Professor Mohd. Ali Hashim and Associate Professor Dr. Bhaskar Sen Gupta for their helpful advice, comments and suggestions.

I also wish to thank the following people who provided help to me during the course of this project. They are: Dr. Praven V.V., Dr. Ramakanth, En. Jasmi and En. Osman.

I would also like to thank my coursemates, Looi Chee Choong, Tan Giok Hui and Bina Kumari Dey for their assistance in the preparation of this dissertation.

Lastly, I would like to thank the IPSP staff for their assistance in the completion of this project.
CONTENTS

Acknowledgements

Abstract

Contents

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

1.1.1 Pollution on ground and surface waters 2

1.1.2 Toxicity to fish and other aquatic life 2

1.1.3 Effects on sewers 6

1.1.4 Effects on sewage treatment 6

1.1.5 Industrial wastewater and heavy metal pollution 7

1.1.6 Various Techniques of Treatment Technologies 8

1.1.6.1 Chemical precipitation 8

1.1.6.2 Ion exchange 9

1.1.6.3 Evaporation 10

1.1.6.4 Membrane process 10

1.1.6.5 Adsorption 11

1.2 RESEARCH OBJECTIVES 12

CHAPTER 2: LITERATURE REVIEW

2.1 NICKEL 14

2.1.1 Nickel in the Environment 15

2.1.1.1 Behaviour of nickel in aquatic environment 15

2.1.1.2 Nickel in the atmosphere 16
2.1.1.3 Nickel in the soil

2.1.2 Usage of Nickel

2.1.3 Nickel Toxicity

2.1.3.1 Effect of nickel on marine and freshwater organisms

2.1.3.2 Effect of nickel on human health

2.1.4 Recommended Environmental Quality Standards (EQS)

2.2 ADSORPTION

2.2.1 Kinetics of Metal Adsorption

2.2.2 Effect of pH

2.2.3 Effect of Coincidental Ions

2.2.4 Adsorption Kinetics and Equilibria

2.2.4.1 Chemical reaction

2.2.4.2 Ion adsorption

2.2.5 Adsorption Model

2.2.6 Effect of Coincidental Ions

2.3 MEMBRANE SEPARATION

2.3.1 Reverse osmosis

CHAPTER 3: MATERIALS AND METHODS

3.1 ADSORPTION

3.1.1 Preparation of Wood-ash

3.1.2 Preparation of Metal Solution

3.1.3 Kinetics of Metal Adsorption

3.1.4 Equilibria of Adsorption

3.1.5 Effect of Biomass Concentration
3.1.6 Effect of Initial pH 48
3.1.7 Zeta Potential Measurement 48
3.1.8 Effect of Coincidental anions and Complexing Agents 49
3.1.9 Effect of Coincidental Cations 49
3.1.10 Metal Ion Concentration Analysis 50

3.2 MEMBRANE SEPARATION

3.2.1 Chemicals 50
3.2.2 Preparation of metal solutions 50
3.2.3 Membrane Unit 51
3.2.4 Metal analysis 52

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 ADSORPTION 53

4.1.1 Kinetics of Adsorption 53
4.1.2 Effect of Ni(ii) on Wood-ash Contact time and concentration 53
4.1.3 Adsorption Kinetics 55
4.1.4 Adsorption Dynamics and Empirical Kinetic Model 58
4.1.5 Adsorption Isotherm 60
4.1.6 Adsorption at various Temperature 61
4.1.7 Thermodynamics Parameters 64
4.1.8 Adsorption at Various pH 65
4.1.9 Effect of Coincidental Anions and Complexing Agent 67
4.1.10 Effects of coincidental Cation 70

4.2 SEPARATION OF NICKEL (II) SULFATE BY MEMBRANE 71
4.2.1 Pressure and Permeate Flow Rate 71
4.2.2 Pressure drop and Nickel (ii) in Permeate 72
4.2.3 Trans-membrane Pressure and Nickel in concentrate 74
4.2.4 Permeate Flow Rate and Nickel(ii) Concentration 75

CHAPTER 5: CONCLUSION

5.1 Adsorption 77
5.2 Membrane Separation 79

APPENDIX 81