CHAPTER 2

LITERATURE REVIEW

21  INTRODUCTION

In this chapter, the basic theory of the nitrogen laser will be reviewed. At the next
section, the electrical pumping scheme for this laser, together with the breakdown process,
will be discussed. The principles of the previous models of the nitrogen laser will be

highlighted too.

22  NITROGEN LASER
Nitrogen laser is one of the most common gas lasers and this laser is based on a
three-level pumping scheme.

According to the Franck-Condon principle, population inversion in nitrogen laser is

obtained by direct impact ionizati llisions with molecules from the ground state. The

three-level pumping scheme is shown in Fig(2.1). Here, the \;ibrational and rotational
splitting of these three levels are omitted for simplicity.

In this case, population inversion occurs between the C*T1, and B’ 1, electronic
states with an induced emission at a wavelength of 337.1 nm, primarily by the stimulated
emission process. Since C*T1, is a state where its lifetime is about 40ns and B* II, is

metastable state with a lifetime of about 10ys, the population inversion ought to be induced



by a very fast electrical discharge in which the electron density is above 10" cm™ and the
electrical current of the discharge is large, in order to avoid the depopulation by
spontaneous emission. Therefore, to satisfy these constraints, the nitrogen laser must be
operated in the pulse mode. The full width at half maximum (FWHM) of the laser pulse

corresponding to the following reaction C*I], — B* I1, is very short (about 8 ns)
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Figure 2.1: The Three Level Pumping Scheme Of The Nitrogen Gas Laser

23 FAST ELECTRICAL DISCHARGE PUMPING METHOD
Since the nitrogen laser requires a fast pumping method, the selection of a pumping
method will become a major factor that needs to be considered. A good pumping method

can ensure a high efficiency optical output.



There are many types of pumping methods and the most common and practical is to
apply a high voltage electrical discharge. The electrical discharge should also be fast
enough to transfer the energy into the gas medium. In order to fulfill the above conditions,
two major electrical circuit configurations have been investigated in the previous works
(Fitzsimmons, 1976; Spyrou, 1991, 1996). These are the Blumlein circuit and the capacitor
transfer circuit. Only the capacitor transfer circuit, or also called as the C-to-C circuit, will

be used in this study.

2.3.1 CAPACITOR TRANSFER CIRCUIT
The capacitor transfer circuit is one of the most common pumping methods for gas
lasers. The circuit is shown in the Fig(2.2). This discharge circuit is characterized by a very
low inductance, a very fast rise time of voltage and current, and also high peak currents.
The C-to-C discharge circuit consists of two major loops, i.e. the charging loop and
the discharge loop. A spark gap is situated in the charging loop. When the spark gap is
triggered, it will breakdown and ground the storage capacitor, C,. All the charge stored in

the charging capacitor will then be transferred to the peaking capacitor, C,, in a very short

period of time. The resi R, and ind L, , of the spark gap should be

maintained at a low value in order to reduce the energy lost during the charging process.
Voltage of opposite polarity would appear instantaneously on the other plate of the storage
capacitor and the peaking capacitor will be charged.

This process will continue until the voltage of the peaking capacitor causes the laser
channel to breakdown. The electrical discharge then occurs and the peaking capacitor will
dump its energy into the laser channel. The electrons in the gas are accelerated and collide

with the gas molecules, creating the population inversion inside the gas medium.



Spark Gap

Laser Gap

Figure 2.2: Capacitor Transfer Circuit Or C-To-C Discharge Circuit

All the charging and discharge processes should not take longer than 40ns to

maintain the high efficiency of the laser output.

24  ELECTRICAL BREAKDOWN IN GASEOUS MEDIUM

The electrical breakdown of gases has been studied in the laboratory since before
the beginning of the twentieth century. Since J. S. Townsend wrote his monograph “The
Theory of Tonization of Gases by Collision” (Townsend, 1910), this subject has been

widely studied and great progress has been achieved in und ding the probl of

electrical breakdown.
From the experiments carried out by Townsend, the importance of the parameter
E/ p is emphasized, where E is the electrical field and p is the gas pressure. The

a is also introduced, which b known as the Townsend Ionization

coefficient on the Townsend Primary Coefficient.



241 TOWNSEND BREAKDOWN MECHANISM

The Townsend or Paschen breakdown mechanism is characterized by a large
number of successive electron avalanches that originate from secondary electron generation
(Townsend, 1910). It can also explain why a large value of electron current / in a parallel

plate'discharge gap increased faster than that predicted by the simple exponential law

n=n,exp(cd). 2.4.1
At the cathode surface, an exp ial increase of the electron current within the
disch gap is d. The el current is based on the positive feedback of the

Townsend avalanche process through secondary electron emission. This is because
Townsend also considered the ionization produced in the gas by positive ions. The equation

derived was

) 242
1-(w/a)exp(ad)}

where @ is the generalized secondary ionization coefficient. It includes the action of

bl

positive ions, photons and atoms at the cathode. Different dary processes

may dominate under different experimental conditions.
The space charge field caused by differences in the motions between the charges

and the positive ions is assumed to be so weak as to be completely negligible. The validity

of this ption will be investigated in this study.

2.42 FIRST AND SECOND TOWNSEND COEFFICIENTS

The overall discharge is d to be a self ined discharge. A correspondi

equation to the above condition is written as given below (Townsend, 1910)

[ijd = 1og[“—’} 243
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where p is the gas pressure, d is the electrode gap. Here, « is the first Townsend
coefficient. This coefficient measures the exponential rate of production of free electrons

per unit mean drift distance of the electrons under the influence of the constant applied

electric field gth E under id

" The coefficient y is the second Townsend coefficient. This coefficient measures the
total probability of secondary electron emission from all sources associated with a single
primary electron emission. Two major sources contribute to this secondary electron
production, i.e. the ion bombardment at the cathode surface and the photoelectric effects.
However, only the ion bombardment at the cathode surface will be included in this study

since it is the more dominant effect (Fletcher and Blevin, 1981).

243 SPACE CHARGE EFFECT AND PLASMA STREAMER FORMATION

Although the Townsend model describes the breakdown phenomenon in the gas
discharge, however, it is still not a complete model. Experimental studies have shown that
population inversion is optimal when the high voltage circuit parameters and those of the
electrical discharge are also optimized (Persephonis et al., 1993, 1995a, 1995b, 1998).
From these previous models, it seems that the best results are obtained when a uniform
plasma discharge is formed. However, it is very difficult to maintain this state in reality.
The space charge effect will still occur in the gas discharge du; to the relatively large
difference in velocities of the positive ions and the electrons. Consideration of the space
charge effect is needed if the study is carried out for the non-uniform electrical field.

In a fast and short duration pulsed discharge, the electrons are free to move towards
the anode. Moreover, the ions are essentially frozen in space in the discharge region. This

will result in a primary electron avalanche where the electrons are propagating towards the



to anode and the positive ions are left behind. The formation of the primary electron

avalanche is shown in Fig(2.3).

Cathode Anode
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Figure 2.3: The Formation Of The Primary Electron Avalanche In A Gaseous
Medium.

The free electrons are idealized as negatively charged spheres. The shape of the

1anch

coneis d ined primarily by el diffusion (Levatter and Lin, 1980). This

can cause a space charge effect in the discharge region. At the critical condition where this
particular space charge is comparable to the applied electrical field £, the formation of the
streamers will begin as shown in Fig(2:4). These streamers de\ielop around a single primary
electron avglanche after its space charge field has grown beyond a certain critical value.

Amoplification of this effect influences the transient behavior of the discharge by increasing

the discharge current and initiating processes that cancel the uniform discharge behavior.
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Figure 2.4: Streamer Development Around A Single Primary Electron Avalanche

The total effect of the streamer formation will lead to the formation of a positively
charged layer. This space charge layer will finally form near the cathode, called the

cathode sheath.

244 CATHODE SHEATH FORMATION

The cathode sheath is defined as the region between the cathode and the point where
the significant positive net charge density located. Since the electrons are not easily emitted
from the cathode and depend on secondary emission properties, the sheath will remain as a
space charge layer until there is significant electron production. Therefore, a net positive
charge density will exist in the region near the cathode.

The cathode sheath acts as a air capacitor and will be able to hold the charges. This
cathode sheath will subsequently collapse if there are a significant numbers of secondary

electrons emitted from the cathode due to the ion bombardment process. Once the sheath



collapses, the charges will be free to move and the gap becomes fully conductive. This will

lead to electrical breakdown between the electrodes.

2.5  MODELING THE PLASMA IN THE GAS DISCHARGE
- In this section, discussions will be focused on earlier studies of the plasma in
nitrogen gas discharge. In these previous models (Persephonis et al., 1993, 1995a, 1995b,

1998), the plasma is parameterized by an inductive and resistive elements.

25.1 PLASMA WITH RESISTIVE AND INDUCTIVE EFFECTS

A comprehensive theoretical investigation of the performance of a pulsed nitrogen

lived th

laser is gh the time-dependent resi and ind A ding to this

method, the waveforms from the electrical discharge are digitized and their first and second

derivatives are calculated. The behavior of the plasma can be represented as difference

equations and the relationships between the resi and ind are formed and

calculated for every time step.
Thus, the differential equations for the C-to-C discharge circuit can be written

mathematically as given below.

d 11 1
=L __ o —— —_

LZk=-R1, [C. g Jj[,du z; [rae 25.1a
dr, 1 1

L,k =-LR, +E:II,dt—C—zjlzdt 25.16

where L, and R, is the inductance and resistance of the discharge gap, respectively. In
these circuit equations, the resistance and inductance of the plasma discharge medium are

included. These circuit equations can be easily solved numerically.



2.5.2 THE RESISTANCE OF THE DISCHARGE UNDER UNIFORM ELECTRICAL

DISCHARGE

Although the plasma can be modeled via the resistive and inductive terms of the
circuit equations, it is very difficult to describe these resistive and inductive effects from
first principles.

The lack of the knowledge of these time dependent parameters complicates the
characterization of the plasma column.

Various assumptions have been made at the previous studies. Many authors initially

d these ind! and resi to be values (Papadopoulos, 1990,
" 1991 ; Iwasaki, 1982). Other authors have d the ind to be while the
resi was p ized through an exp ial drop during the formation phase of the

discharge, as (Dipace, 1987, Leo, 1991). Here,
R=R,+Re"" 2.5.2

where

a is the first Townsend coefficient and u, is the drift velocity.
The calculation of the resistance through electron avalanche multiplication, which

was carried out by Fitzsimmons (1976), was different from the method above. The new

method introduce the resi of the disch gap as below
R=—2_ 254
S-Wo
where, o is the time-dependent conductivity of the gas given by
o= 255
E



Here,
d =Electrode separation
§ =Thickness of the arc
W =Active length of the laser tube
E =Electrical field

The resistance of the discharge gap is

R= ! , 256
uneab

where
4 =Electron mobility
n=Electron number density
e=Electron charge
I=Interelectrode distance
a=Length of the discharge volume
b =Thickness of the discharge volume
However, this method can only be applied when the electrical field is assumed to be
uniform. In order to get a clearer and more realistic picture of the electrical discharge of
nitrogen gas, it is necessary to study the non-uniform electrical field. For a further
investigation of the gaseous discharge under different configurations, a new model needs to

be built up. In this new model, the fluid behavior of the plasma is simulated.

2.6 THE FLUID BEHAVIOR OF THE PLASMA
The plasma in a gaseous discharge can be described as a fluid. At the initial stage of

the disch; the ions and el are free to move in the discharge medium under the
8




Here,
d =Electrode separation
S =Thickness of the arc
W =Active length of the laser tube
E =Electrical field
The resistance of the discharge gap is

—; 25.6
pmeab’ -

where

1 =Electron mobility

n=Electron number density

e=Electron charge

I=Interelectrode distance

a=Length of the discharge volume

b =Thickness of the discharge volume

However, this method can only be applied when the electrical field is assumed to be

uniform. In order to get a clearer and more realistic picture of the electrical discharge of
nitrogen gas, it is necessary to study the non-uniform electrical field. For a further
investigation of the gaseous discharge under different conﬁgumiions, a new model needs to

be built up. In this new model, the fluid behavior of the plasma is simulated.

26 THE FLUID BEHAVIOR OF THE PLASMA
The plasma in a gaseous discharge can be described as a fluid. At the initial stage of

the discharge, the ions and electrons are free to move in the discharge medium under the



influence of the external electrical field. This process will continue until the space charge

field has grown sufficiently to affect the motion of the charged particles.

2.6.1 CONTINUITY EQUATIONS IN PHYSICS

- The fluid behavior of the plasma in g can be rep d by the

continuity equations. In order to model the motion of the charged particles with its

velocities, ¥, and its densities, p, in the particular discharge, a continuity equation in

partial differential form is required. The clear picture on the distributions of these particles

can be seen, specially its distributions in a non-uniform electrical field. However, solving
" the continuity is not easy due to its numerical stability and accuracy requirement.

The ordinary continuity equation can be written as below:
o
;+V~Vp=-pV~V 2.6.1a

or in conservative form

a—”:—V~pV 2.6.16
ot
These equations are used to describe two ph taking place simul ly,

i.e. convection and compression. Compression is described by the pV -7 term. This term
does not really pose as many numerical difficulties as convection, i.e., propagation along
the characteristics. However, the convective term, ¥ - Vp in Eq(2.6.1a), makes this
equation one of the most difficult partial differential equations of continuum physics to be
solved with stability and accuracy.

Numerically solving the continuity equations requires some powerful algorithms. In

this study, a finite-difference algorithm, the Flux-Corrected Transport (FCT), is chosen.



The FCT techniques are capable of solving these continuity equations more accurately and

reliably than straightforward mathematical expansion alone.

2.6.2 REQUIREMENT FOR FINITE-DIFFERENCE ALGORITHMS
-Over the years, many schemes have been attempted to improve numerical solutions
of continuity equations. These include the method of characteristics, spectral methods,
finite-element methods, splines, and finite-difference methods.
Characteristic methods and spectral methods are not generally applicable to
complicated nonlinear systems of continuity equations, while giving superb results in some
 cases, such as the diffusion effects as well as convection and compression.

Finite-el and spline approaches also give excellent results in most cases.

However, these methods are plex and their putational costs are often prohibitively
high.

Thus, the attention naturally turns time and again to the simple, generally
applicable, computationally efficient, finite-difference formulations.

Since the finite-difference algorithms are generally simple and fast, the
improvement of the basic finite-difference schemes needs to be more accurate without
sacrificing too much of their simplicity or speed. These basic ideas led to the development
of a new scheme of algorithms by Boris and Book (1973, 1975,'1 976a, 1976b), and are
designed to satisfy a set of seven requirements listed as follows:

1. Exact conservation properties of the physical equation should be mirrored in the finite-
difference approximations.
2. The algorithm should ensure stability of all the harmonics in some useful range of the

grid spacing &x and the time-step ot .



3. The positivity (nonnegativity) property of p(x, t) in continuity equation as in Eq(2.6.1)
should be preserved. Thus, if the density p is positive and decreasing (in time), it stops
changing as it approaches zero density.

4. The algorithm should not be built around special properties such as giving exactly the
corfect answer when ¥ &t/8x=1.

5. The overall algorithm should be effectively second order in regions of the problem

where the concept of order is related usefully to y. This i is included

to provide a minimal long-term accuracy free of at least the worst types of secularity.
6. The algorithm should leave the numerical density profile p undisturbed when the flow
velocity is zero.
7. The algorithm should have a single or double step time integration to ensure simple,
fast, efficient calculations.
The first three requirements govern the conservation, stability, and positivity of the
algorithm, and the last four requirements referred to the concepts concerning flexibility and

accuracy. This new algorithm is called the Flux-Corrected Transport (FCT).

263 THE PRINCIPLES OF FLUX-CORRECTED TRANSPORT (FCT) ALGORITHM

In this study, the Flux-Corrected Transport is used to solve the fluid equations.
Previous researchers had proven that this method provides a powerful numerical algorithm
to solve these equations with high stability and accuracy (Boris and Book, 1973, 1975,

1976a, 1976b; Morrow, 1981).



2.6.3.1 INTRODUCTION

The Flux-Corrected Transport (FCT) algorithm was first introduced by Boris and
Book (1973). These flux-corrected transport algorithms are of indeterminate order but yield
realistic accurate results. In addition to the mass-conserving property of most conventional
algorithms, the FCT algorithm strictly maintains the positivity of actual mass densities.

Steep gradients and inviscid shocks are thus handled particularly well.

2.6.3.2 POSITIVITY AND ACCURACY
Positivity is a property satisfied by the continuity equation, i.e. the density p(x,r) in
"Eq(2.6.1 ) is everywhere positive and the source terms are zero. It is a mathematical
consequence of the continuity equation and an obvious physical property of the flow that
the density can never assume negative values.

In order to retain these physical and mathematical properties into difference
equations, such as Eulerian algorithms, a certain amount of numerical diffusion need to be
included. This numerical diffusion has the consequence that the solution remains stable
while retaining positivity.

Numerical diffusion is an inherent problem. It can invalidate numerical calculations
and reduce the accuracy while using linear algorithms, unless they have very fine
computational meshes are used. .

The continuity equation, Eq(2.6.1), can also be considered as a three point explicit
finite-difference formula as below:

P =apl +b,p] +c.pl, 262

where p!*' is one time step further than Pl



This general form includes the first-order upwind algorithm and other common
algorithms. If Ax and At are constants, Eq(2.6.2 ) can be rewritten in a form that

guarantees conservation,

P =p - l(f,.l (on +p7)- e o7+ 00, ))+ (V,.l (or+p7)-v_ (o1 + o1, ))
2 Ve 7 H 7

2.6.3
The convective coefficients €, are given as:
H
At
iy =Vt 3 2.6.4

where v, oy a1 the velocities.

The v, y are the nondimensional numerical diffusion coefficients which appear as a
consequence of considering adjacent grid points. Conservation of p in Eq(2.6.3) also
constrains the coefficients a,, b, and c, by the condition:

a4 +b+e =1 265
Positivity of p/'*' for all possible positive profiles p/ requires that a,, b, and c, be

positive for all i. By matching the corresponding terms and the condition in Eqs(2.6.2)

and (2.6.3), we will get

a,=v_, +=¢,, i 2.6.6a
320
1 1
b=l-—¢  +=¢_,-v ,-v_, 2.6.6b
25 T T TV
1
C, =V, , ==, 2.6.6¢
0t T8



n+l

In order to ensure p/'"' to be always positive, Vi needs to be positive and

sufficiently large. The positivity conditions derived from Eqs(2.6.6 ) are,

< L 2.6.7a
2

forall i. 2.6.7b

If algorithms are used with llz >v, ., positivity is not necessarily destroyed but

2%+

1
isd

can no longer be guaranteed. The diffusion coefficient v _, cannot be zero, due to the

[
explicit three points formula in Eq(2.6.3). The numerical stability problem will occur if
this value is zero.

The condition in Eq(2.6.7) for positivity leads directly to numerical diffusion in
addtion to the desired convection:

n+l

Pl =pl v ol + p,")— Vi (p," +pl )+ convection 2.6.8
i 1

Finite difference methods which are higher than first order, such as the Lax-
Wendroff methods, reduce the numerical diffusion but sacrifice assured positivity. This
apparent dilemma can only be resolved by using a nonlinear method to integrate the

continuity equations.

2.6.4 THE BASIC IDEA OF FLUX-CORRECTED TRANSPORT (FCT)

The basic concepts of Flux-Corrected Transport (FCT) can be derived in a rather
straightforward way. Simplicity leads us to start with an explicit three point approximation
to the continuity equation.

The FCT algorithm actually consists conceptually of two major stages, a transport
or convective stage (Stage 1) followed by an antidifusive or corrective stage (Stage 2). Both

20



stages are conservative and maintain positivity. Their interaction enables FCT algorithms to

treat strong gradients and shocks without the usual generated ripples.

2.6.4.1 THE TRANSPORT STAGE
The explicit three-point approximation to the continuity equation given by

Eq(2.6.2) can be rewritten as below:
Pi=apl,+bp! +cpl, 2.6.9
This equation is used to determine provisional value, g,, from the previous time step or
“old” values, p; .
The conservation condition at Eq(2.6.5 ) must be satisfied and the value of a,, b,
and ¢, must all be greater than or equal to zero to assure positivity.

The Eq(2.6.9) in conservation form will become:

B=pt ~ ey lotu o) (o7 + o2 ) by + 1) vy ot 01

., 1
=P —E[f%—f,,}] 26.10
The values of variables at interface i + 4 are averages (possibly unequally
weighted) of values at cells i +1 and 7, and the values at i — 1 are averages of values at

cells i and i—1. Atevery cell i, the 5, is differs from p? as a result of the inflow and out

flow fluxes of p, denoted by f,,, across the cell boundaries.

The fluxes are successively added and subtracted along the array of densities p; so that the

overall conservation of p is satisfied by construction. Summing all the provisional

21



densities gives the sum of the old densities. The expressions involve the convective fluxes,

£,
i3

The relation between a , b and ¢ coefficients with the & and v are essentially

discussed as in Eq(2.6.6) in the last section.

The diffusion coefficients, v,,, are included to ensure positivity of the provisional
H

values, p,. The positivity condition for this provisional values, 5, has been discussed as in
Eq(2.6.7).
However, after Eq(2.6.9) is imposed, two of the three coefficients in Eq(2.6.10)

 still need to be determined. One of these sets of coefficients must ensure an accurate

representation of the mass flux terms. Thus

£ =D 26.11
3

il ;
where, v, is the fluid velocity approximated at the cell interfaces. The other set of
:

coefficients, v_, are chosen to maintain positivity and stability. The choices of V. will be
3

1
it

discussed at the next section.

2.6.4.2 THE ANTIDIFFUSION STAGE

After the transport stage, the provisional value must be strongly diffused to ensure

in Eq(2.6.7), we will have the diffusive, first

positivity. For example, if the v, , = -;— €01
g g

order upwind algorithm. It is the heavily diffusive donor-cell algorithm.

22



Any other choices for v, , can only be more diffusive in order to preserve
i

positivity. The problem will occur since the positivity and accuracy are mutually exclusive.
An obvious correction to get around this overstrong diffusion is needed.

In order to remove the strong diffusion elements in the algorithms, an antidiffusion
stage has been introduced. In this stage, a correction is being used and the equation is being
written as below:

Pl =p, THay Pt -ﬁ,)+#,.§(/3. -Pa) o

+p 26.12

The new value of p' is calculated after the positive antidiffusion coeffiecient /, f‘;
is added. This‘ antidiffusive factor will reduce the strong diffusion implied by the
Eq(2.6.7).

Although the antidiffusion reduces the strong diffusion implied by Eq(2.6.7), it
also reintroduces the possibility of negative densities in the new profile 5,. Instability is
even possible if the values H,,y are too large. In order to avoid this apparent bind, the
modification has to be carried out to the antidiffusive fluxes in Eq(2.6.12 ). This method is
called flux correction or flux limiting method. This is due to the antidiffusive fluxes

fa=u,a-5) . 2613
appearing in Eq(2.6.12) that have to be corrected or limited to assure positivity as well as
stability.

The best linear choice of f “ which still retains positivity is given below:
3

2.6.14
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However, this is still not good enough. To reduce the residual diffusion My = Vi
further, the flux correction has to be nonlinear. It must depend on the actual values of the
density 5.

The basic idea of the nonlinear flux correction formula is to create no new maxima
or minima in the solution. For example, the density 5, at grid point i reaches zero sooner
than its ne‘ighbors Then the second derivative is locally positive and so any finite
antidiffusion would force the minimum density value 5, =0 to become negative. Since
this condition will not happen physically, the antidiffusive fluxes should be limited so that
minima in the profile can be made and the value is no deeper than the antidiffusive stage
defined by Eq. (2.6.12). In this manner, the maxima in the profile must be made lower than
the antidiffusion terms.

Combining the two condition above, it will form the basis of the Flux Corrected-
Transport method:

The antidiffusion stage should generate no new maxima or minima in the solution, nor
should it accentuate already existing extrema.

This qualitative formulation for nonlinear filtering can be quantified easily. The new.

flux-corrected transport values p;" are given by
pf:ﬁl—f‘j%tflf% ) 2.6.15

where the corrected fluxes f,;, should satisfy
H

£y = max0,min] 5, i)

ad
I

55~ 5.}
2.6.16

Here ‘S‘ =1 andsign S = sign@,‘z —ﬁ,‘,).

24



In order to know what this flux-correction formula is doing, assume that

(.2 = B,y is greater than zero. Then the Eq(2.6.16 ) will become:
fiy= min[(ﬁ,.z =B 4,3 B=5) (B -5 )] 2.6.17a

or

c —o
Iy 2.6.17b

The “raw” antidiffusive flux £ =y, (5., - 75,) always tends to decrease p" and
to increase pj), . The flux-limiting formula only ensures that the corrected flux cannot push

p! below:p/’, (which would be a new minimum) nor push p},, above p/,, (which would

give a new maximum). The general formula Eq(2.6.16 ) is being constructed to take care of

all cases of sign and slope.

27  DISCHARGE CURRENT INDUCED BY THE MOTION OF THE CHARGED
PARTICLES
From the literature, a formula for the discharge current is derived for a general
electrode geometry from the energy balance equation in which the displacement current is
explicitly taken into account (Sato, 1980).

From Fig(2.5), the sch ic di shows the y of the electrodes, the

direction of the electric fields and the drift velocities of the charged particles.

The ¥, and I are the constant applied potential and the current in the external
circuit. The space charge distributions in the gap are represented by the continuity
equations for electrons and ions as below:

on,
a—l’+V-(nlu,)=an,|u,| 27.1a
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6; +V-(n,u,)=anlu,| 2716

where « is the electron ionization coefficient in the discharge medium. »n and u are the
number densities and velocities of the charged carriers. i and e are correspond to the
positive ions and the electrons. Combination of these two equations, we can get the net

charge density p as below

Cathode E » Anode

A
4

A

Figure 2.5: The Electrodes And The Direction Of The Electric Fields And The
Velocities Of The Charged Particles .

n, —n,)
ot

e =eV-(n,u, —n,u,) 272

The electric field in the discharge medium is also being modified by the space
charge

26



E=E,+E 273
where E, is the static applied electrical field and E' is the field produced by the space

charge. Since the static applied electrical field is always uniformly distributed in the
discharge medium and the space charge field depends on the net charged densities in the

gaseous medium, we can list down some general relations as written as below

V.E, =0 2.7.4a
v.E=£ 2.7.4b
Ea
and
E'=-Vy 27.4¢

where y is the potential of the field caused by the space charge.

From the energy balance equation containing the displacement current
JE'
V,I=|elnu, - -Edv+¢,|—-Edv 275
1= el ) B, [ 2

where Ldv represents the volume integration over the discharging space. The second term

of the Eq(2.7.5 ) represents the rate of change of the electric field energy which has been
pointed out by Horii (1976) to be take into account in the energy balance equation.
The first term of the equation (2.7.5 ) can be divided into two terms
"‘Ve(n‘n, -n,u,)-Edv =L€(’l,ll, —nu,) E,dv+Le(n,u, -n,u,) Edv
2.7.6
The second term of Eq(2.7.6) can be partially integrated by use of the relation

E'=-Vy and becomes

J:e(n,u. -n,u,)-Edv= —L (//e(n,u, - n,u,)»dS + LwV . (n‘u, -nu, )dv

27



2.7.7

where Lds represents the surface integration over the closed surface of the discharging

space. The first term of Eq(2.7.7) is zero when the integral is take over the surface of the

electrodes and infinitely distant from the gap. The second term of the Eq(2.7.7) can be

rewritten by use of Eq(2.7.2)and V-E'= £ a5 below
£,

°

le/eV~(n,ul —n,u,)iv =J:u/%dv

= e V-
-—ejy/— -dS -¢ 'f— -E'dv

K
=¢,|— Edv 278
05
From the Eq(2.7.5), we now can rewrite it as

v —Ie nu, -nu,)-Edv+e, I Edv
= Ive(n,u, —n,u,)~Ede+snL%’~Edv—s,,j:%-E’dv

='[e(n,u, -nu,)-Egdv+ s,,“‘va?lf’»l:sdv ) 219
due to the Eq(2.7.3)
The partial integration of the second term of Eq(2.7.9 ) given by
OE'
e,jl;~ J’ o Es d5+ej'—v Egdv
=0 2.7.10

because ofthe V-E =0
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Finally the Eq(2.7.5 ) will become
Vd =[elnu, -nu,) Egdv 27.11
Therefore, the formula of the discharge current is

I :Vi_"v(n,u, ~nu,) Egdv 27.12

From this formula, we noticed that the influence of the field produced by space
charge does not appear explicitly. It is evident that Eq(2.7.12 ) is compatible with the

principle of superposition.
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