CHAPTER 3

METHODOLOGY AND NUMERICAL SIMULATION

3.1 INTRODUCTION

In this chapter, the computational methods used to simulate the nitrogen gas

1ot h

" discharge are discussed. The details of the numerical si are also emp d. Some

important equations such as the Poisson’s equation, circuit equation and Sato’s equation are
explained in detail. The Phoenical LPE SHASTA is the version of the FCT adopted in this

study.

32  CIRCUIT EQUATIONS
The C-to-C electrical discharge can be modeled as the LCR circuit shown as
Fig(3.2.1). The circuit characteristics and its oscillation behavior can be mathematically

represented by four major equations as written below:
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where the effective resistance, R,; is determined by

R=.ﬁ:ﬂa§m.
7 =R
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The bypass resistor, R, is initially set as SkQ, and the gap resistance is determined by

the equation below

R =7 3.2.1b

where i is the internal current in the gap due to the motion of the charge particles. This

current will be determined by Sato’s equation. The more detailed di

on Sato’s

" equation will be carried out at section 3.8 in this chapter.
These equations are written as ordinary first order differential equations.

Numerically solution of these equations is carried out using the fourth order Runge-Kutta

method (RK-4).

Spark Gap

Rypass

Laser Gap ]
=
3
AN

Figure 3.2.1: Capacitor Transfer Circuit Or C-To-C Discharge Circuit
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32.1 FOURTH-ORDER RUNGE-KUTTA METHOD (RK-4)
Let us consider an ordinary differential equation

dr
o (¥,x) 322

The basic idea of the fourth-order Runge-Kutta method (RK-4) is evaluating this
function, f, at four selected points and use slope estimates k,,k, ,k; and k, whose

weighted average is AY, . In particular, the setting is shown as below:

ky =hf(x,.¥,)
h K
k, =hf(xj +§,YI+7‘]
Bk
ky =hf(xj +—2-,YJ +—27~)
ko=hflx, +nY, +k,) 3.23

where A is the step size for x.
In summary, the solution of this function, f is

Y. =Y +k,+2k2+2k,+k,

=Y, 5 324

3.2.2 NUMERICAL SOLUTION OF THE CIRCUIT EQUATIONS
The four circuit equations Eq(3.2.3) can be easily solved by using the RK-4 method.

These values of 1, I,, ¥, and V, for the next time step are calculated. The gap voltage,
V- can be easily determined by the Ohm’s law, V,,, = I,R 5.
The different symbols of k, /, m and n are used corresponding to the values of

V,, V3, I, and I,. The numerical solutions are listed as below:
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k= A"['CL‘(I‘)j
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and the following steps are:

k,=At*[—El,‘—(1l+O,5'm|))
I, -Ax*(c ((, +0.5%m, )~ (1, +0.5* n))j
=Ax*[-%t(1,+o.s*m,)+Ll|(V, +o.5*k,)—-[§(t/,+o.s~1,)]

=At'(L1 (A +05*1)-l(1 +0. s*n,)R,,J 3.2.6
and
k, =At"(—CLl(Il +0A5"‘m2)]
A _M(Cz (1, +0.5%m,)- (1,+0.5*n,))]

=Ax'(.%(1l +O.5*m2)+£(l’l aro,s'flc,)—i(vz +0,5*12)]
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and

k, =Az*[-cil(1, +m3)]
1, =At*(CL2((I, my)-(l, H.,))]
m =N*[-%:(1, +m3)+2—‘(V, +k,)_qu(Vz +13)j

1 1
n, =At'(—L:(Vz +1)- Z(Iz +n,)R,,J 328

Finally, the new values at the new time ¢' =7 + A can be calculated as below,

ViV, +k1+2kz+2k,+k,

V,’=V2+I +2122213+[‘

my +2m, +2my +m
! = - 2 3 4
L=I+

6
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6
The value of the gap voltage, V,,, can be directly determined with equation
Vew =Ry ) 3.2.10
The voltage of the gap, V,,, is important in calculating the electrical field of the

disch h 1 which will be di d at the next section.
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33 THE STUDY OF THE ELECTRICAL FIELD
In this study, the simulation of the electrical field of the discharge gap have been
carried out in both ways, there are the uniform distribution electrical field and the non-

uniform electrical field.

3.3.1 UNIFORM ELECTRICAL FIELD

Under the uniform distribution of the electrical field, some important assumptions
had been made. Firstly, the charged densities are distributed uniformly in the discharge gap
and the current fluxes are consistent all along the mesh. Secondly, the electrodes are perfect

absorbing and emitting materials.

The value of the electrical field can easily be calculated by using the equation as
below:
V.. (t
E(r) = —‘L‘;(—) 33.1

where d is the distance between the discharge electrodes.

3.3.2 NON-UNIFORM ELECTRICAL FIELD

The non-uniform electrical field is caused by the space charge effect inside the
discharge gap.

The motion of the electrons is very large when compared to the motion of the ions.
Therefore, the value of the electron flux is larger than the ion flux. This will cause space
charge effects and cathode sheath is formed, since the cathode is not a perfect emitting

material. The electrons will be released from the cathode under the secondary Townsend

emission, where the positive ion bomb plays a signifi role to free the electrons

after the collision process under the high electrical field. In this case, there is always a net
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charge density in the discharge gap and the electrical field is not uniform as discussed in the

previous section.

333 POISSON EQUATION
. In order to calculate the non-uniform electrical field distribution, we need to
calculate the total net charge densities at the particular mesh. The distribution for space and

time variation can be determined by using the Poisson equation as below:

V<E(x,t)=—Ei(n,(x,t)—n‘(x,l)] 332

o

- where e is the electron charge and ¢, is the permittivity of free space.

3.4 LOCAL ELECTRICAL FIELD BETWEEN THE ELONGATED PARALLEL

PLATES

The gap geometry plays an important role while simulating the electrical field.
These plates’ dimension, where the electrode length is always larger then the electrode
separation, imposes the choice of the appropriate model used to calculate the space charge
field.

The assumption is made that the electron and ion population are distributed

uniformly in parallel planes with a surface charge density, o C}cmz.
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Figure 3.4.1:Parallel Planes Charge Simulation Used For Electrical Field Calculation

Fig(3.4.1), we can identify the local electrical field at any point, j, which is

affected by a surface charge, and represented by a partial differential equation as below:

5E=§‘&—§{cos€ X 3.4.1
76, ¥

where dxdy leads to a surface integral.

From the geometrical diagram, we can determine

X,
c059=ﬁ", 3.4.2a
(x’ +y? +x;)’§
and
rt=( eyt en) 3.4.2b

where i, =1.2,.,n




Point i is the location of the surface charge while J is the point where the local

electrical field is calculated. x; is the distance between point i and j

After substituting Eq(3.4.2a) and Eq(3.4.2b ) into Eq(3.4.1), we can get

_ o,
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Consider the integration from 0 < x < % and 0<y< % , Eq(3.4.3) will become

A g, X,
E(J)"E“I Io = ’+le Y 3.44

While calculating the total planar area, we can have
—_— 9i%y
EG)=~ j f e Y 345

From the Eq(3.4.5), we can solve the integration readily,

Xy _ r/
j‘r/x+y+,»c)’v 'L(x+xXx2‘1+x)/"y
L IV R (N
_x., arctng(x2+y2+x;)5 =0 ly=0

3.46

Finally, the local electrical field, E(J) atpoint, j, which is affected by a surface

charge can be simplified into

A
E()) =—U‘—arclg¢— 347
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3.4.1 SIMULATION OF THE ELECTRICAL FIELD VARIATION
The total effect of the local electrical field E(]) atpoint ;j can be calculated by

summation of all the surface charge.

. e xy N4
El =) —‘arag—Fr————- l 3.48
) Z’Df., xu(xl+y7+x3)n w=0 y=0
where i =1,2,..,n and i # j
L 0, ab
E(j) =) —tarct 3.49
()] Z,:zmc,, g

)c,l(a2 +b% + 4x;)%
Calculation can be done for the series j and a series of local electrical field
' variation E(x,t) at the particular time ¢ can be determined.

Besides the local electrical field, electrons and ions in the discharge channel will
also experience the external static electrical field. The total electrical field is actually a

combination of both the external static and local electrical fields.

35  PHOENICAL LPE SHASTA FLUX CORRECTED TRANSPORT
In this study, the Phoenical LPE SHASTA Flux-Corrected Transport as a version of
the FCT algorithms is used. This version of the FCT algorithm had been tested by Boris

and Book on its stability and accuracy (Boris and Book, 1976; Morrow, 1981).

3.5.1 DIFFUSION COEFFICIENTS AND LOW PHASE ERRORS
From the previous discussion, we know that we need to carefully select the
diffusion coefficients, V.1 as we simulate the fluid behavior of the plasma. There are many

alternatives of choosing the diffusion coefficients, V... depending on the versions and types
H

of FCT algorithms. From the previous investigation done by Book and Boris (1976a,
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1976b), there are some versions of FCT algorithms that had been studied and tested for
their efficiencies.

One of the most common versions of the FCT algorithms is the Phoenical LPE
SHASTA FCT algorithm. This SHASTA (Sharp And Smooth Transport Algorithm) has
been tested by Book and Boris (1973, 1976a, 1976b) and show positive results as a Low
Phase Error (LPE) algorithm.

In this version of FCT algorithm, the diffusion coefficients, V... are chosen as
H

below

1.

1
Teaels 351

ith
The result shows that Phoenical LPE SHASTA FCT algorithm has a small absolute

error. This is comparable with the other algorithms, such as Lax-Wendroff or Leapfrog
methods. The new version of FCT algorithm is 3-4 times better in taking care of numerical

errors as compared with these methods.

3.52 NUMERICAL SOLUTION OF PHOENICAL LPE SHASTA FLUX
CORRECTED TRANSPORT
The Phoenical LPE SHASTA version of flux corrected transport takes the following
steps: ’

a. Compute a transported and diffused solution of provisional value, 5,, using an equation

B=pt - 2elots + 1)yl + ot ) oslot )0, ot < 02,)

352
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4 . . . .
where s = Uy i— and Uy i the flow velocity half way between grid points i and

i+1 calculated in this case by simple averaging. The diffusion coefficients as a version
of Phoenical LPE SHASTA, are written as below:

1.2

v, —l+—£
6 37

353

1
i+t

b. Compute the raw antidiffusive fluxes, /2, which in our cas for the Phoenical version
=

are
f:; E/‘Nf‘-(ﬁl'l —p+ (_ Pha+3pla=3p] + /7:1)/6) 3.5.4
where 4,,, = % —%ef‘x 3.55

c. Compute corrected antidiffusive fluxes, f; <., using
H

52y =8 max{o,min] 5. - 5, ) 1

5.5~ 5.} 356

where |S| =1 and sign § = sign(B., =B
d. Perform antidiffusion using
=B Sy Iy 357

Thus p[" is the required solution at ¢ + Ar .

3.6 TOWNSEND IONIZATION PROCESS IN THE DISCHARGE MEDIUM

When the discharge is taking place in the laser channel between the two electrodes,
the charged carriers will be accelerated and traveled along the discharge medium. These
carriers will experience the creation of new pairs of charges of electrons and ions. This

incident is due to the ionization process in the discharge medium as explained by Townsend
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(1910). At the same time, the number of the carriers would be reduced due to the loss of

1 h

electrons and ions during the r ion and att:
3.6.1 FLUID EQUATIONS WITH SOURCE TERM

- In order to model the Townsend process in a gaseous discharge, the fluid equation
at Eq(2.6.16 ) can be rewritten by now adding a source term, S . This equation in 1-

dimesional forms shown as below:

P_g %0 361
or ox -

where ¢ is the time variable; x is the space variable; p is the charged carrier number
densities and v is the drift velocity of the charged carriers.
If writing in terms of electron and ion densities », and », respectively, the equation

will take the following form:

M M ()

ot ox
=n, |u,]a(%(x,t)] - n,n,ﬂ(%(x, t)] 3.6.2a

=n,|u,|a[-f;(x,t)J—n,n‘ p(%(x,})j 3625

where u, and u, are electron and ion mean velocities, & and /3 are the first ionization and

radiative recombination coefficients respectively.
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3.6.2 NUMERICAL SOLUTION OF THE SOURCE TERM IN THE FLUID
EQUATION
For the simple Euler method of solution, the source terms can be simply added to

the convective term. Hence,
dp/v]
Ap  =A ST -
p [ ' 6): ]

= ad(s7)- ap, 363

However, this solution is not suitable to be used specially in the FCT codes
(Morrow, 1981). A higher order numerical solution is needed, as for the convective term,
Ap,, since the FCT treats it with higher order of accuracy. For this purpose, an auxiliary
step was introduced.

In this auxiliary step, the complete Ap;. y at half the time step is calculated by using
the equation

b, - (s7)- 22

This important step allows the auxiliary values for the source terms, S,'": to be
calculated, as shown in the Eq(3.6.2). Then a full step was calculated, using the equation
Apy = Az(s,"’* )+ Ap, - 365
While comparing the Eq(3.6.3) and Eq(3.6.5), the auxiliary values for the source
terms, S,"*t is the better choice when compared to the S;".

The order of accuracy can be increased further if the double auxiliary step is taken.

The quarter time step of convective term, Ap,. ” is calculated and the correspondence

1 . . .
source terms, S," 4 can be determined. The numerical solutions are as below:
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dor, =-ii(s,")+% 366

together with
Ar( ,,,.) Ap,
Apy, = 2t{srt ) 22 367
Pr}/z PR 2
and
Ap, = AdS™ )+ Ap, 3.6.8
T i c

The accuracy of the single auxiliary step and double auxiliary step will be tested and

investigated in this study.

3.6.3 BOUNDARY CONDITION OF THE FLUID EQUATION

In a gas discharge, the velocity of the ion is so small when compared to the electron.
This leads to the formation of the space charge.

Since the main purpose of this study is focused on the space charge effects and the
sheath formation at the cathode, the anode sheath formation is assumed to be very small
and negligible. We can assume that the anode is a perfectly absorbing and emitting
material. The electron and ion fluxes are always consistent at the anode. It is assumed that
there is no space charge formed at the anode.

However, the cathode can emit electrons if there is enough energy for the ions on
bombardment at the surface of the cathode. These electrons can be free after the impact
under the high local electrical field (Fletcher, 1981).The study of these secondary emission
effects is very important inside the cathode region.

From the previous studies, the electron current density produced by ion
bombardment of the cathode with a y coefficient, is determined by the following

expression
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j‘(o,f)=}’ j‘(0,1)=7 nu, 3.6.9
where j, and j, are the electron and ion current densities at the cathode respectively. Since
experimental results on the dependence of the local field on the y coefficient are not
conclusive (Spyrou, 1996), the 7 coefficient is generally assumed to be as 10%
‘ In this study, simulation is done with and without these secondary emission effects.

The study of the characteristics of the space charge is also carried out for both cases.

3.6.4 INITIAL SETTING OF THE SWARM PARAMETERS

Some coefficients such as the Townsend first ionization coefficient, @ and
recombination coefficient, # can be expressed as functions of the local reduced field £/ p
(Spyrou, 1996). This assumption implicitly mean that a local electric equilibrium is verified
throughout the gap. Deviation from this state is produced when the field gradient is very
sharp and the length of the formed sheath is smaller than the electron ionization mean free

path. The above parameters are written as below

£ 7.4326exp[— 270.5£) in cm™Torr™ 3.6.10
P E
E 08
B =6.3636x 10'”(—) in cm’s™ 3.6.11
p

The velocities of the electron and ion can also be expressed in the functions of the

local reduced field £/p (in Vem™Torr™) (Spyrou, 1991, 1996). There are

u, =2.9x105(£] inems™ 3.6.12
P

u, =1.67x10’(£] incm s 3.6.13
P
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37 SATO’S EQUATION AS THE SOLUTION OF THE DISCHARGE CURRENT
From the formula derived in the last chapter, we can rewrite Eq(2.7.12), when a

discharge is occurring in between two parallel plates. The equation can be presented as
eA d
= 7.’; (nu, ~n,u,)ix 371

where A4 is the discharge surface, d is the distance between the two electrodes.

Eq(3.7.1) can be easily solved numerically. The value of the discharge current is

calculated and injected into the circuit equation to recalculate the dy ic resi of the
gap as shown in Eq(3.2.1b).

From this Sato’s method, the discharge current was calculated based on the motion
of the charged particles. This information is more reliable while comparing with the
methods used for solving the circuit equation empirically, where the resistance of the
discharge gap is assumed empirically (Iwasaki and Jitsuno, 1982; Papadopoulos, 1990;

Dipace, 1987).

38  NUMERICAL ALGORITHM

In this section, the numerical algorithm of the new model will be discussed. Fig(3.8)
shows a simple flow chart that summarizes the basic principle of the computational
operation.

Before the simulation is began, assumptions of both the ion and electron densities in
the discharge channel is needed. Both of these charge carriers are assumed uniformly
distributed. The number density is assumed to be 1000cm™ due to the cosmic radiation
process. Some important parameters such as the mesh sizes for the space and time, Ax, and
At have to be carefully selected to fulfill the requirement of the FCT algorithm for stability

reasons. The details on these conditions have been discussed in the previous chapter.
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As the first step of the simulation, RK-4 method is applied to solve the circuit
equations. As a result, the voltage of the gap is first calculated. The gap voltage enables the
determination of the local electrical field distribution by using the modified 1-D Poisson’s

equation. Some important parameters such as a, B, u; and u. can be calculated for every

location in the ch 1. With these param FCT will be used to solve the fluid
equations and calculating the new density distribution for electron and ion at time £+ Af.

These new distributions will be used to calculate the internal discharge current and
it will be calculated using Sato’s equation. From here, the dynamic resistance of the
discharge channel can be easily calculated with simple Ohm’s law. This dynamic resistance
will then be fed back into the circuit equation to complete the circle of the calculation.

These distributions of the charge carriers are also needed to simulate the local
electrical field distribution for the next time step. Some useful data such as the discharge
voltage, discharge current, time and space dependent electrical field and also the

distribution of the charge carriers will be recorded.
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Figure 3.8: A Simple Chart Showing The Algorithm Of The Computer Model




