MORPHOGENESIS AND TISSUE CULTURE STUDIES OF
Gerbera jamesonii BOLUS Ex. Hook F.

NOR AZLINA HASBULLAH

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2010
MORPHOGENESIS AND TISSUE CULTURE STUDIES OF
Gerbera jamesonii Bolus Ex. Hook F.

NOR AZLINA HASBULLAH

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2010
UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Nor Azlina bt. Hasbullah (I.C/Passport No: 810318-10-5094)
Registration/Matric No: SHC 060006
Name of Degree: Doctor of Philosophy (Ph.D)
Morphogenesis and Tissue Culture Studies of Gerbera jamesonii Bolus Ex. Hook F.
Field of Study: (Science) Plant Biotechnology

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Nor Azlina Hasbullah Date 14/10/2010

Subscribed and solemnly declared before,

Witness’s Signature Rosna Mat Taha Date 14/10/2010

Name: Rosna Mat Taha
Designation: Professor
ABSTRACT

In vitro regeneration of Gerbera jamesonii Bolus ex. Hook f. was successfully carried out in this study. Petiole and leaf explants from 8-week-old aseptic seedlings were used as source of explants. Different response was observed when different explants were cultured on the culture media. MS (Murashige and Skoog, 1962) supplemented with 2.0 mg/l BAP and 0.5 mg/l NAA was identified as the optimum medium for shoot regeneration, while petiole explant was identified as the most responsive explant in this study. Petiole explants regenerated shoots (94.3 ± 2.5 %) and produced 9.3 ± 0.6 shoots per explant. MS basal medium was the optimum medium for plantlet root induction. Various concentrations of auxin such as NAA, IAA, IBA and 2,4-D at a range of 0.1-2.0 mg/l and cytokinin such as BAP, Kinetin, Zeatin and 2iP at a range of 0.1-3.0 mg/l were used in order to achieve in vitro regeneration of G. jamesonii.

Callus was also induced from G. jamesonii petiole and leaf explants. Optimum callus induction was obtained when petiole explant was cultured on MS medium supplemented with 2.0 mg/l 2,4-D and 1.0 mg/l BAP. Green compact callus were induced. Through screening of secondary metabolites in Gerbera callus, flavonoid, terpenoid and conjugated chain compounds were found in Gerbera callus.

Studies on indirect somatic embryogenesis of G. jamesonii were carried out using leaf explant. Induction of embryogenic callus was obtained when petiole explants were cultured on MS media supplemented with 0.01-2.0 mg/l 2,4-D. White friable callus was induced. Embryogenic callus was distinguished from non-embryogenic callus through
double staining method. Embryogenic callus obtained were transferred to MS liquid medium fortified with 0.1-2.0 mg/l 2,4-D added with 0.1 or 1.0 mg/l NAA. Somatic embryos produced from embryogenic callus cultured in liquid medium were then transferred to MS medium supplemented with 1.0 mg/l BAP and 0.1 mg/l NAA added with 50 mM L-Proline. A total of 29.8 ± 1.2 embryos per explant were obtained.

Synthetic seeds of *G. jamesonii* were successfully produced when micro shoots, globular and cotyledonary phase somatic embryos were encapsulated with encapsulation matrix composed of 3.0% sodium alginate dissolved in Ca-free MS liquid medium supplemented with 2.0 mg/l BAP and 0.5 mg/l NAA. Germination rates obtained from encapsulated micro shoots was 74.5 ± 2.6%, 34.8 ± 1.2% for encapsulated globular somatic embryos and 54.2 ± 1.3% for encapsulated cotyledonary phase somatic embryos. Synthetic seeds from encapsulated micro shoots could be stored at 4 ± 1 °C for 180 days while synthetic seeds from encapsulated globular and cotyledonary phase somatic embryos could be stored at 4 ± 1 °C up to 90 days only before being germinated.

Generally, *in vitro* regeneration from petiole explants were reduced when explants were exposed to gamma irradiation (10-60 Gy). As the irradiation dose increased, *in vitro* shoots regeneration was declined and abnormal shoots were formed. *In vitro* plantlets exposed to gamma irradiation also showed height reduction as the irradiation dose was increased. Effects of gamma irradiation were also observed on callus tissues. Growth of *G. jamesonii* callus tissues was also reduced with the increase of the irradiation dose. Reduction of chlorophyll content in callus tissues was observed when *Gerbera* callus
were exposed to gamma irradiation. Soluble protein content in callus tissues were also reduced with the increase of irradiation dose.

Gerbera jamesonii plantlets obtained from tissue culture system through direct regeneration, somatic embryogenesis, synthetic seeds and also irradiated plantlets were successfully transferred and acclimatized to the new environment. Garden soil and vermiculite were used as sowing media. Growth and development of plantlets were optimum when plantlets obtained from regeneration of petiole explants were acclimatized in garden soil (combination of black soil and red soil at 2:1) with 86.0 ± 0.9% survival. Ex-vitro flowering was achieved after 6 months. Gerbera jamesonii plants obtained from in vitro regeneration showed similar morphological characters to the mother plant.
ABSTRAK

Regenerasi lengkap bagi tumbuhan *Gerbera jamesonii* Bolus ex. Hook f. daripada sistem kultur tisu telah berjaya diperoleh. Eksplan petiol dan daun daripada anak benih aseptik yang berumur 8 minggu telah digunakan untuk tujuan ini. Respons yang berbeza telah diperoleh apabila eksplan yang berlainan dikultur di atas media kultur. Medium MS (Murashige and Skoog, 1962) ditambah dengan kombinasi hormon 2.0 mg/l BAP dan 0.5 mg/l NAA telah dikenalpasti sebagai medium optima bagi regenerasi pucuk manakala eksplan petiol pula telah dikenalpasti sebagai eksplan yang terbaik dalam kajian ini. Eksplan petiol telah berjaya menghasilkan pucuk *in vitro* (94.3 ± 2.5%) dengan 9.3 ± 0.6 pucuk dihasilkan bagi setiap eksplan. Medium MS tanpa hormon merupakan medium yang optima untuk penginduksian akar. Pelbagai kombinasi auksin seperti NAA, IAA, IBA dan 2,4-D dalam julat antara 0.1-2.0 mg/l dan sitokinin seperti BAP, Kinetin, Zeatin dan 2iP pada julat 0.1-3.0 mg/l telah digunakan untuk tujuan regenerasi lengkap tumbuhan *G. jamesonii* secara *in vitro*.

Induksi kalus juga telah dijalankan ke atas eksplan petiol dan daun tumbuhan *G. jamesonii*. Penginduksian kalus optima telah diperoleh apabila eksplan petiol dikultur di atas media MS dengan 2.0 mg/l 2,4-D dan 1.0 mg/l BAP. Kalus yang dihasilkan bewarna hijau dan mempunyai struktur yang padat. Kajian penskrinan bahan metabolit sekunder ke atas kalus yang dihasilkan mendapati kalus daripada tumbuhan *Gerbera* mengandungi flavonoid, terpenoid dan juga sebatian rantai berkonjugat.
Kajian embriogenesis somatik secara tidak langsung telah dijalankan ke atas eksplan daun. Pengaruh kalus embriogenik telah diperoleh apabila eksplan petiol dikultur di atas medium MS ditambah dengan 0.01-2.0 mg/l 2,4-D. Kalus yang dihasilkan bewarna keputihan yang mempunyai struktur yang lembut dan rapuh. Kalus embriogenik telah dibezakan dengan kalus bukan embriogenik dengan menggunakan kaedah pewarnaan berganda. Kalus embriogenik yang dihasilkan kemudian dipindahkan ke dalam media cecair MS yang mengandungi 0.1-2.0 mg/l 2,4-D yang ditambah dengan 0.1 atau 1.0 mg/l NAA. Embrio somatik dihasilkan apabila kalus embriogenik daripada kultur ampaian dipindahkan ke atas media MS dengan 1.0 mg/l BAP dan 0.1 mg/l NAA dan ditambah dengan 50 mM L-Proline dengan penghasilan embrio sebanyak 29.8 ± 1.2 embrio bagi setiap eksplan yang telah digunakan.

Biji benih tiruan bagi tumbuhan *G. jamesonii* telah berjaya diperoleh apabila pucuk mikro, embrio somatik peringkat globul dan kotiledon disalut menggunakan matriks pengkapsulan yang dihasilkan daripada 3.0% larutan sodium alginat yang dilarutkan di dalam media cecair MS tanpa kalsium dan ditambah dengan 2.0 mg/l BAP dan 0.5 mg/l NAA. Peratus percambahan biji benih tiruan daripada eksplan pucuk mikro adalah 74.5 ± 2.6%, 34.8 ± 1.2% bagi embrio somatik peringkat globul dan 54.2 ± 1.3% bagi embrio somatik peringkat kotiledon. Biji benih tiruan yang dihasilkan daripada pucuk mikro dapat disimpan pada suhu 4 ± 1 °C sehingga 180 hari manakala biji benih tiruan yang dihasilkan daripada pengkapsulan eksplan somatik embrio peringkat globul dan kotiledon hanya dapat disimpan pada suhu 4 ± 1 °C sehingga 90 hari sebelum dicambahkan.

Plantlet tumbuhan G. jamesonii yang berjaya dihasilkan daripada sistem kultur tisu samada daripada regenerasi secara langsung, embriogenesis somatik, biji benih tiruan dan juga plantlet yang dihasilkan melalui regenerasi in vitro yang telah didedahkan kepada sinaran radiasi gamma telah berjaya dipindahkan ke persekitaran luar dan menjalankan proses aklimatisasi. Tanah kebun dan juga vermiculite telah digunakan sebagai substrat pertumbuhan. Pertumbuhan dan perkembangan plantlet yang diaklimatisasi didapati optima apabila plantlet yang dihasilkan daripada regenerasi eksplan petiol dipindahkan ke tanah kebun (campuran tanah hitam dan tanah merah pada nisbah 2:1) dengan peratus keterushidupan sebanyak 86.0 ± 0.9%. Pembungaan ex-vitro telah dapat diperhatikan selepas 6 bulan. Perbandingan dari segi morfologi mendapati bahawa tumbuhan
G. jamesonii yang diregenerasi daripada sistem kultur tisu mempunyai ciri-ciri morfologi yang serupa dengan tumbuhan induk.
ACKNOWLEDGEMENT

Bismillahirrahmanirrahim……

Alhamdulillah…I would like to convey my greatest appreciation to The Ministry of Higher Education of Malaysia and The University of Malaya for giving me the opportunity to pursue my Ph.D studies under “Skim Latihan Akademik IPTA (SLAI)” programme that has supported me to accomplish this research successfully.

A special thank to Dean of Faculty of Science, University of Malaya, Professor Dato’ Dr. Hj. Mohd. Sofian Azirun, Former Dean, Professor Dr. Hj. Amru Nasrulhaq Boyce and Head of Department of Institute of Biological Sciences, Professor Dr. Rosli Hashim and former Head of Department, Professor Datin Seri Dr. Hjh Aishah Salleh.

I would like to express my most special gratitude to my supervisor and also my source of inspiration, Professor Dr. Hjh Rosna Mat Taha for her guidance and strong support. Her commitments and encouragements built my spirit and determination to work harder and achieve my goals. She has become the greatest role model for me. To Professor Dr. Hj. Abdul Kariem Arof, thank you very much for your motivation and advices. You have always inspired me to write…and write….

To The Institute of Research Management and Monitoring of University Malaya (IPPP), thank you for the research grants given that has helped me a lot in ensuring my research a success…

To my beloved mother, Normah Yusoff, without you, I am not able to face the world by myself. You have raised me with your love, tenderness and care. Your sacrifices to watch me succeed are priceless. You are my best friend and my best listener. Thank you mak, I love you so much. My dearest brother and sister, thank you for being there whenever I need both of you. There are no words in this world that can describe how much I love both of you. To Iyaad, you are forever my sweetheart....

To my beloved husband Jaffry Zakaria, who has always been so understanding, supportive and caring. I am grateful to have found somebody as wonderful as you. To my baby girls, my precious Bahiyah Nur and Sufiyyah Nur…Thank you for understanding Mama...I will always love both of you…

To my dearest labmates, Kak Asmah, Kak Yati Daud, Amir, Kak Fatimah, Farrah, Ina, Fizah, Shimah, Madihah, Sakinah, Shikin, Zu, Ema, Mira, Kak Azani, Nora, Zura and Ain, thank you so much for being the best lab mates in this whole wide world. Our laughter, cries, happiness and sadness will always become an unforgettable memories in my life. Kak Mastura and Rinie, both of you are the best. Thank you for your supports, comments and help during my years in UM.

En. Rosli SEM, General and Student Affairs Office Staffs of Institute of Biological Sciences, gardener and for those who have helped me in the journey of my studies…Thank you very much….
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1

1.1 GENERAL INTRODUCTION 1

1.2 INTRODUCTION TO THE FAMILY ASTERACEAE (COMPOSITAE)

1.2.1 Genus *Gerbera* (African Daisy) 33

1.3 RESEARCH OBJECTIVES 37

CHAPTER 2 IN VITRO REGENERATION OF *Gerbera jamesonii* 44

Bolus Ex. Hook f.

2.1 EXPERIMENTAL AIMS 44

2.2 MATERIALS AND METHODS 48

2.2.1 Source of Explants 48

2.2.2 Preparation of Aseptic Seedlings 48

2.2.3 Type of Explants 48

2.2.4 Sterilization of Explants 49

2.2.5 Preparation of Culture Media 49
2.2.5.1 Preparation of MS Stock Solution 50
2.2.5.2 Preparation of Basic Medium, MS (1962) 50
2.2.5.3 Preparation of Culture Media with Hormones 51

2.2.6 Culture Conditions 51
2.2.7 Subculture 52

2.2.8 Plant Regeneration *In Vitro* 52
2.2.8.1 Identification of the Best Polarity of Explants for Shoot Regeneration 52
2.2.8.2 Identification of Shoot Regeneration Media 53
2.2.8.2(a) Identification of suitable BAP and NAA Combination for Shoot Regeneration 53
2.2.8.2(b) Identification of Other Suitable Cytokinin and Auxin for Shoot Regeneration 55
2.2.8.3 Identification of Root Induction Media 57
2.2.8.4 Identification of Optimum Sucrose Concentration for Regeneration of Shoot 57
2.2.8.5 Identification of Optimum pH Media on Regeneration of Shoots 58
2.2.8.6 Effect of Liquid and Solid Media on Formation of Adventitious Shoot 58
2.2.8.7 Effect of Coconut Water on Shoot Regeneration 59

2.2.9 Microscopic Studies (Scanning Electron Microscopy-SEM) 59
2.2.10 Data analysis 60

2.3 RESULTS 61
2.3.1 Identification of the Best Polarity of Explants for Shoot Regeneration 61
2.3.2 Identification of Shoot Regeneration Media 64
2.3.3 Identification of Root Induction Media 75
2.3.4 Effect of Liquid and Solid Media on Formation of Adventitious shoot 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.5 Identification of Optimum Sucrose Concentrations for Shoot Regeneration</td>
<td>79</td>
</tr>
<tr>
<td>2.3.6 Identification of Optimum pH Media for Shoot Regeneration</td>
<td>81</td>
</tr>
<tr>
<td>2.3.7 Effect of Coconut Water on Regeneration of Shoot</td>
<td>83</td>
</tr>
<tr>
<td>2.3.8 Microscopic Studies (Scanning Electron Microscopy-SEM)</td>
<td>85</td>
</tr>
<tr>
<td>2.3.9 Data Analysis</td>
<td>85</td>
</tr>
<tr>
<td>2.4 SUMMARY OF RESULTS</td>
<td>90</td>
</tr>
<tr>
<td>CHAPTER 3 CALLUS INDUCTION FROM VARIOUS EXPLANTS OF Gerbera jamesonii Bolus Ex. Hook f.</td>
<td>94</td>
</tr>
<tr>
<td>3.1 EXPERIMENTAL AIMS</td>
<td>92</td>
</tr>
<tr>
<td>3.2 MATERIALS AND METHODS</td>
<td>94</td>
</tr>
<tr>
<td>3.2.1 Seed Sterilization</td>
<td>94</td>
</tr>
<tr>
<td>3.2.2 Callus Induction</td>
<td>94</td>
</tr>
<tr>
<td>3.2.3 Data Analysis</td>
<td>96</td>
</tr>
<tr>
<td>3.2.4 Studies on Secondary Metabolites in Callus</td>
<td>96</td>
</tr>
<tr>
<td>3.3 RESULTS</td>
<td>98</td>
</tr>
<tr>
<td>3.3.1 Callus Induction</td>
<td>98</td>
</tr>
<tr>
<td>3.3.2 Screening of Secondary Metabolites</td>
<td>104</td>
</tr>
<tr>
<td>3.4 SUMMARY OF RESULTS</td>
<td>106</td>
</tr>
</tbody>
</table>
5.2.4 Preparation of Calcium chloride Dehydrate Solution 135
5.2.5 Encapsulation Techniques and Formation 135
of Synthetic Seeds
5.2.5.1 Sodium Alginate Solution and 136
Calcium Chloride Dehydrate Solution
in Different Concentrations
5.2.5.2 Preparation of Encapsulation Matrix in 137
Different Solution
5.2.6 Germination of Synthetic Seeds on Various Sowing 137
Media
5.2.7 Low Temperature Storage 138
5.2.8 Data Analysis 138

5.3 RESULTS 139
5.3.1 The Effect of Different Concentrations of 139
Sodium Alginate Solution and Calcium Chloride
Dehydrate Solution on Bead Formation
5.3.2 Germination of Gerbera Synthetic Seeds on 139
Different Germinating Media
5.3.3 Encapsulation Matrix in Different Solution 145
5.3.4 Effect of Different Types of Sowing Media 145
on Germination of Synthetic Seed
5.3.5 Low Temperature Storage 149

5.4 SUMMARY OF RESULTS 151
CHAPTER 6 PLANT REGENERATION FROM SYNTHETIC SEEDS OF *Gerbera jamesonii* Bolus Ex. Hook f.

6.1 EXPERIMENTAL AIMS 152

6.2 MATERIALS AND METHODS 154
 6.2.1 Preparation of Explants 154
 6.2.2 Formation of Synthetic Seeds 154
 6.2.3 Plant Regeneration from Synthetic Seeds 154
 6.2.3.1 Germination media 155
 6.2.3.2 Effects of Different Sucrose Concentrations in Culture Medium 156
 6.2.3.3 Effects of Hormone in Encapsulaiton Matrix 156
 6.2.4 Storage of Synthetic Seeds 157
 6.2.5 Data Analysis 157

6.3 RESULTS 158
 6.3.1 Germination of Synthetic Seeds 158
 6.3.2 Effects of Storage Period on Germination of Synthetic Seeds 175

6.4 SUMMARY OF RESULTS 178

CHAPTER 7 EFFECTS OF IRRADIATION ON CULTURES OF *Gerbera jamesonii* Bolus Ex. Hook f.

7.1 EXPERIMENTAL AIMS 180

7.2 MATERIALS AND METHODS 183
 7.2.1 Source of Explants 183
 7.2.2 Source of Gamma Radiation 183
 7.2.3 Gamma Radiation Dose 183
CHAPTER 8

ACCLIMATIZATION OF PLANTLETS OF

Gerbera jamesonii Bolus Ex. Hook f.

8.1 EXPERIMENTAL AIMS

8.2 MATERIALS AND METHODS

8.2.1 Source of In Vitro Plantlets

8.2.2 Development and Growth of In Vitro Plantlets
8.2.2.1 Transplantation of *In Vitro* Plantlets to Various Media or Substrates and Acclimatization Process

8.2.3 Transferring of Plantlets to the Green House and Acclimatization of *Gerbera* Plantlets Obtained from Various Culture Protocols

8.2.4 The Effect of Different Environmental Factors on Acclimatization of *Gerbera jamesonii*

8.2.5 Measurement of Chlorophyll Content

8.2.6 Macromorphology Studies

8.2.7 Data Analysis

8.3 RESULTS

8.3.1 Transferring of *In Vitro* Plantlets to Various Media or Substrates and Acclimatization Process

8.3.2 Transferring of Plantlets to the Green House and Acclimatization of *Gerbera* Plantlets Derived from Various Treatments

8.3.3 The Effect of different Environmental Conditions on Acclimatization

8.3.4 Measurement of Chlorophyll Content

8.3.5 Macromorphology Studies of *Gerbera jamesonii*

8.4 SUMMARY OF RESULTS
. LIST OF TABLES

Table 2.1	Responses of different polarity of explants cultured on MS media supplemented with 1.0 mg/l BAP and 1.0 mg/l NAA maintained at 25 ±1 °C and 16 hours light and 8 hours dark for 8 weeks.
Table 2.2	The effect of different concentrations and combinations of BAP and NAA on leaf and petiole explants cultured on MS media at 25 ± 1 °C with 16 hours light and 8 hours dark.
Table 2.3	The effect of different combinations of auxin (2, 4-D, IBA, IAA and NAA) at the concentration of 0.5 mg/l and Cytokinin (BAP,2iP, Kinetin and Zeatin) at the concentration of 2.0 mg/l on petiole explant cultured on MS media at 25 ± 1 °C with 16 hours light and 8 hours dark.
Table 2.4	Development of roots from in vitro shoots in rooting media after 4 Weeks. Cultures were maintained at 25 ± 1 °C with 16 hours light and 8 hours dark.
Table 2.5	Multiplication of shoots after 4 weeks being cultured in solid and liquid media. Cultures were maintained at 25 ± 1 °C with 16 hours light and 8 hours dark.
Table 2.6	The effect of different sucrose concentration in regeneration of shoots. Cultures were maintained at 25 ± 1°C with 16 hours light and 8 hours dark.
Table 2.7	The effect of different pH in regeneration of shoots. Cultures were maintained at 25 ±1 °C with 16 hours light and 8 hours dark.
Table 2.8	The effect of coconut water for regeneration of shoots from petiole explant. Cultures were maintained at 25 ±1 °C with 16 hours light and 8 hours dark.
Table 3.1 Callus induction from leaf explants of *Gerbera jamesonii* Bolus ex. Hook f.

Table 3.2 Callus induction from petiole explants of *Gerbera jamesonii* Bolus ex. Hook f.

Table 3.3 Thin layer chromatography (TLC) on methanol extract of callus of *Gerbera jamesonii* Bolus ex. Hook f.

Table 4.1 Induction of callus from leaf explants cultured on MS medium supplemented with 2, 4-D after 8 weeks of culture.

Table 4.2 Induction of callus from leaf explants cultured on MS medium supplemented with TDZ after 8 weeks of culture.

Table 4.3 Induction of callus from leaves explants cultured on MS medium supplemented with BAP and 2,4-D after 8 weeks of culture.

Table 4.4 Effects of BAP, NAA and L-Proline on formation of somatic embryos of *Gerbera jamesonii* Bolus ex. Hook f.

Table 4.5 Composition of culture medium and growth condition for *Gerbera jamesonii* somatic embryo induction

Table 5.1 Effect of different concentrations of sodium alginate \((\text{NaC}_n\text{H}_{2n}\text{O}_6)\) and calcium chloride \((\text{CaCl}_2\text{H}_2\text{O})\) on bead formation.

Table 5.2 Effect of different concentrations of Sodium Alginate \((\text{NaC}_n\text{H}_{2n}\text{O}_6)\) and Calcium Chloride \((\text{CaCl}_2\text{H}_2\text{O})\) solution on germination of *Gerbera jamesonii* Synthetic Seed on solid and liquid Media.

Table 5.3 Growth response of micro shoots of *Gerbera jamesonii* encapsulated in different encapsulation matrix.

Table 5.4 Effect of different sowing media on germination rate of synthetic seeds of *Gerbera jamesonii*.

Table 5.5 Effect of storage period (days) at 4 ± 1 °C on germination of synthetic seeds of *Gerbera* on germination MS basal medium.
Table 6.1 In vitro germination of synthetic seeds of Gerbera jamesonii (micro shoots, globular phase, cotyledonary phase somatic embryos). Results were observed based on germination period (days).

Table 6.2 In vitro germination of synthetic seeds of Gerbera jamesonii (micro shoots, globular phase, cotyledonary phase somatic embryos). Results were observed based on germination rate (%).

Table 6.3 Germination of synthetic seeds of Gerbera jamesonii (micro shoots, globular phase, cotyledonary phase somatic embryos). Results were observed based on survival rate (%) after 8 weeks of germination.

Table 6.4 Effect of sucrose at different concentrations on germination rate of Synthetic Seeds of Gerbera jamesonii.

Table 6.5 Growth response of micro shoots and somatic embryo of Gerbera encapsulated in different encapsulation matrix. Results were observed based on germination rate (%) after 10 days of germination.

Table 6.6 Growth response of micro shoots and somatic embryos of Gerbera jamesonii encapsulated in different encapsulation matrix. Results were observed based on survival rates (%) after 8 weeks of germination.

Table 6.7 Effect of storage period (days) at 4 ± 1 °C on germination of synthetic seeds of Gerbera jamesonii, germinated on MS basal medium.
Table 7.1 The effects of gamma irradiation on regeneration of shoots from petiole explants of *Gerbera jamesonii*. Irradiated explants were cultured on MS medium supplemented with 2.0 mg/l BAP and 0.5 mg/l NAA. Cultures were incubated in the culture room at 25 ±1 °C with 16 hours light and 8 hours dark for 8 weeks.

Table 7.2 The effects of gamma irradiation on regeneration of *in vitro* propagated shoots of *Gerbera jamesonii*. Irradiated shoots were cultured on MS medium supplemented with 2.0 mg/l BAP and 0.5 mg/l NAA. Cultures were incubated in the culture room at 25 ±1 °C with 16 hours light and 8 hours dark for 8 weeks.

Table 7.3 The effects of gamma irradiation on callus of *Gerbera jamesonii*. Irradiated callus were cultured on MS medium supplemented with 2.0 mg/l BAP and 0.5 mg/l NAA. Cultures were incubated in the culture room at 25 ±1 °C with 16 hours light and 8 hours dark for 8 weeks.

Table 7.4 Chlorophyll a, Chlorophyll b and Total Chlorophyll Content of Irradiated Callus of *Gerbera jamesonii* at different doses of Gamma irradiation.

Table 7.5 Soluble Protein Content (µg of fresh weight) in irradiated callus of *Gerbera jamesonii* at different doses of Gamma irradiation.

Table 8.1 Responses showed by *in vitro* Gerbera plantlets after being acclimatized in various sowing media. Results obtained after 4 weeks plantlets being acclimatized.

Table 8.2 Responses showed by *in vitro* Gerbera plantlets obtained from various sources after being acclimatized in garden soil. Results obtained after 12 weeks plantlets being acclimatized.

Table 8.3 Comparison of macromorphological characters of *in vitro* plantlets (control), intact plants, and irradiated plantlets at 20 Gy, 30 Gy and 40 Gy after 6 months being acclimatized on garden soil.
LIST OF FIGURES

Figure 1.1	Nine-month-old intact plant of *Gerbera jamesonii* Bolus ex. Hook f. with flowers.
Figure 1.2	Intact flower of *Gerbera jamesonii* Bolus ex. Hook. f.
Figure 1.3	Nine-month-old intact plant of *Gerbera jamesonii* Bolus ex. Hook f.
Figure 2.1	Regeneration of shoots from petiole explants cultured on MS medium supplemented with 2.0 mg/l BAP and 0.5 mg/l NAA
Figure 2.2	Regeneration of shoots from petiole explants cultured on MS medium supplemented with 2.0 mg/l Zeatin and 0.5 mg/l IBA.
Figure 2.3	Development of roots from leaf explant cultured on MS medium supplemented with 0.1 mg/l BAP and 2.0 mg/l NAA.
Figure 2.4	Roots formed from leaf explants cultured on MS medium fortified with 2.0 mg/l NAA.
Figure 2.5	*In vitro* plantlet obtained from regeneration of petiole explant cultured on MS medium supplemented with 2.0 mg/l BAP + 0.5 mg/l NAA. Plantlet was transferred to MS basal media for root elongation.
Figure 2.6 (a)	SEM micrograph showing abaxial surface of *in vitro* leaf of *Gerbera jamesonii*. Stoma were clearly seen on the leaf.
Figure 2.6 (b)	SEM micrograph showing adaxial surface of *in vitro* leaf of *Gerbera jamesonii*. Very few stoma were seen on the leaf.
Figure 2.6 (c)	SEM micrograph showing abaxial surface of *in vivo* (intact) leaf of *Gerbera jamesonii*. Stoma were seen on the leaf.
Figure 2.6 (d)	SEM micrograph showing adaxial surface of *in vivo* (intact) leaf of *Gerbera jamesonii*. Very few stoma were found on the leaf.
Figure 2.6 (e)	SEM micrograph showing stomata on *in vitro* leaf of *Gerbera jamesonii*.
Figure 2.6 (f) SEM micrograph showing stomata on *in vivo* (intact) leaf of *Gerbera jamesonii*.

Figure 2.6 (g) SEM micrograph showing trichomes on *in vitro* leaf of *Gerbera jamesonii*.

Figure 2.6 (h) SEM micrograph showing trichomes on *in vivo* (intact) leaf of *Gerbera Jamesonii*.

Figure 3.1 Callus derived from leaf explant cultured on MS medium supplemented with 2.0 mg/l 2, 4-D and 1.0 mg/l BAP.

Figure 3.2 Callus derived from leaf explants cultured on MS medium supplemented with 1.0 mg/l 2, 4-D and 2.0 mg/l BAP.

Figure 3.3 Callus derived from leaf explant cultured on MS medium supplemented with 0.5 mg/l 2, 4-D and 2.0 mg/l BAP.

Figure 3.4 Callus derived from petiole explant cultured on MS medium supplemented with 2.0 mg/l 2, 4-D and 1.0 mg/l BAP.

Figure 4.1 (a) Embryogenic callus cells stained red (acetocarmine).

Figure 4.1 (b) Non-embryogenic callus cells stained blue (Evan’s Blue).

Figure 4.2 (a) Cross section of embryogenic callus observed under Scanning Electron Microscope. Embryogenic callus with ticker cell wall and friable structure.

Figure 4.2 (b) Cross section of non-embryogenic callus observed under Scanning Electron Microscope. Non-embryogenic cell wall shows compact and thin cell wall.

Figure 4.3 Somatic embryogenesis of *Gerbera jamesonii* from suspension culture.

Figure 4.4 Globular and heart shaped stages of somatic embryos formed on embryo induction medium.

Figure 4.5 (a) Globular- shaped phase somatic embryo observed under microphotography microscope.
Figure 4.5 (b) Heart-shaped phase somatic embryo observed under microphotography microscope.

Figure 4.5 (c) Torpedo-shaped somatic embryo observed under microphotography microscope.

Figure 4.5 (d) Cotyledonary phase somatic embryo of *Gerbera jamesonii*.

Figure 4.6 (a) Globular-shaped phase somatic embryo observed under Scanning Electron Microscope.

Figure 4.6 (b) Heart-shaped phase somatic embryo observed under Scanning Electron Microscope.

Figure 4.6 (c) Torpedo-shaped phase somatic embryo observed under Scanning Electron Microscope.

Figure 4.6 (d) Cotyledonary phase somatic embryo observed under Scanning Electron Microscope.

Figure 4.7 Micro shoots developed from somatic embryo of *Gerbera jamesonii*.

Figure 5.1 Micro shoots of *Gerbera jamesonii* cultured on MS medium supplemented with 3.0 mg/l BAP.

Figure 5.2 Ideal beads formed when encapsulation matrix was composed of Ca-free MS basal medium added with 3.0% sodium alginate and 3.0% sucrose and soaked in 100 mM CaCl$_2$H$_2$O.

Figure 5.3 Encapsulated micro shoots of *Gerbera jamesonii*.

Figure 5.4 Plantlet obtained from germination of synthetic seed of *Gerbera jamesonii*.

Figure 6.1 Synthetic seeds of *Gerbera jamesonii* obtained from the encapsulation of micro shoots.

Figure 6.2 Synthetic seeds of *Gerbera jamesonii* obtained from the encapsulation of cotyledonary phase somatic embryo.

Figure 6.3 Germination of synthetic seed of *Gerbera jamesonii* from encapsulated micro shoots.
Figure 6.4 Plantlet obtained from germination of *Gerbera* synthetic seed derived from encapsulation of micro shoots.

Figure 6.5 Plantlet formed from germination of *Gerbera jamesonii* synthetic seed derived from encapsulation of cotyledonary phase somatic embryos.

Figure 6.6 Three-month-old plantlet obtained from germination of *Gerbera jamesonii* synthetic seed being acclimatized in the greenhouse.

Figure 7.1 (a) Regeneration of shoots from irradiated (30 Gy) petiole explants of *Gerbera jamesonii* cultured on non-irradiated culture medium.

Figure 7.1 (b) Regeneration of shoots from irradiated (40 Gy) petiole explants of *Gerbera jamesonii* cultured on non-irradiated culture medium.

Figure 7.1 (c) Regeneration of shoots from irradiated (60 Gy) petiole explants of *Gerbera jamesonii* cultured on non-irradiated culture medium.

Figure 7.2 (a) Three-month-old non-irradiated plantlets acclimatized and transferred to the greenhouse.

Figure 7.2 (b) Three-month-old irradiated plantlets at 10 Gy acclimatized and transferred to the greenhouse.

Figure 7.2 (c) Three-month-old irradiated plantlets at 20 Gy acclimatized and transferred to the greenhouse.

Figure 7.2 (d) Three-month-old irradiated plantlets at 30 Gy acclimatized and transferred to the greenhouse.

Figure 7.3 (a) Irradiated callus at 20 Gy cultured on non-irradiated culture medium.

Figure 7.3 (b) Irradiated callus at 30 Gy cultured on non-irradiated culture medium.

Figure 7.3 (c) Irradiated callus at 40 Gy cultured on non-irradiated culture medium.
Figure 7.4	Chlorophyll a, Chlorophyll b and Total Chlorophyll Content of Irradiated Callus of *Gerbera jamesonii* incubated at 25 ± 1°C with 16 hours light and 8 hours dark.
Figure 7.5	Protein Standard Curve.
Figure 7.6	Soluble Protein Level (µg of fresh weight) in Irradiated Callus of *Gerbera jamesonii* incubated at 25 ± 1°C and 16 hours light and 8 hours dark.
Figure 8.1	The effect of different environmental conditions on *Gerbera jamesonii* during acclimatization.
Figure 8.2	Two-month-old *in vitro* plantlets growing on garden soil and covered with plastic for acclimatization process.
Figure 8.3	Three-month-old *Gerbera jamesonii* plantlets ready to be acclimatized in the green house.
Figure 8.4:	Comparison of chlorophyll content between intact plants, *in vitro* plantlets, 2-month old, 5-month-old and 12-month-old acclimatized *in vitro* plantlets.
Figure 8.5	Flower bud produced after 23 weeks *in vitro* plantlet being acclimatized in the green house.
Figure 8.6	Six-month-old *Gerbera* plantlet obtained from *in vitro* system, acclimatized in the green house with flower bud.
Figure 8.7	Six-month-old flowering *Gerbera* plant obtained from regeneration of petiole explant
Figure 8.8	Flower of *Gerbera jamesonii* from *in vitro* plantlet after being acclimatized for 6 months in the green house.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP</td>
<td>Benzylaminopurine</td>
</tr>
<tr>
<td>CaCl₂.₂H₂O</td>
<td>Calcium chloride dehydrate</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2,4- Dichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>IAA</td>
<td>Indole-3-acetic acid</td>
</tr>
<tr>
<td>IBA</td>
<td>Indolebutyric acid</td>
</tr>
<tr>
<td>2-iP</td>
<td>2-isopentenylaminopurine</td>
</tr>
<tr>
<td>Kinetin</td>
<td>6-furfurylaminopurine</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilo Pasca</td>
</tr>
<tr>
<td>mg/l</td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoog</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>Magnesium carbonate</td>
</tr>
<tr>
<td>NAA</td>
<td>Naphthalene acetic acid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NaC₆H₇O₆</td>
<td>Sodium alginate</td>
</tr>
<tr>
<td>Rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>TDZ</td>
<td>Thidiazuron</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Polyoxyethylene sorbitan monolaurate</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
</tbody>
</table>