LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER ONE : INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Overview on leprosy</td>
<td></td>
</tr>
<tr>
<td>1.1.1 History of leprosy</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Properties of M. leprae</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Classifications of leprosy</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 The differential diagnosis of leprosy</td>
<td>5</td>
</tr>
<tr>
<td>1.1.4.1 Slit-skin smear</td>
<td>8</td>
</tr>
<tr>
<td>1.1.4.2 Skin biopsy</td>
<td>9</td>
</tr>
<tr>
<td>1.1.5 Treatment and control of leprosy</td>
<td>9</td>
</tr>
<tr>
<td>1.2 The polymerase chain reaction (PCR)</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Application of PCR in leprosy</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Leprosy in Malaysia</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Objectives of this study</td>
<td>18</td>
</tr>
</tbody>
</table>

iv
CHAPTER TWO: MATERIALS AND METHODS

2.1 Human skin punch biopsy (HSPB) samples and homogenates (HSPBHs) 20

2.2 Mouse foot-pad homogenates (MFPHs) 21

2.3 Materials 21

2.4 Stock solutions and buffers 22

2.4.1 Buffer for *M. leprae* genomic DNA extraction (Jamil *et al.*, 1994) 22

2.4.2 Buffers and primer stock solutions for OTN PCR (Jamil *et al.*, 1994) 22

2.4.2.1 10X PCR buffer (without Mg$^{2+}$) 22

2.4.2.2 2X reaction buffer 22

2.4.2.3 4X primer mixture 24

2.4.3 10X PCR buffer (Woods and Cole, 1991) 24

2.4.4 Solutions for agarose gel electrophoresis 24

2.4.4.1 Tris-borate-EDTA (TBE), pH 8, 5X strength 24

2.4.4.2 Bromophenol blue (BPB) loading mix, 6X strength 24

2.4.5 Solutions for colorimetric detection of OTN PCR products (Jamil *et al.*, 1994) 25

2.4.5.1 50 mM carbonate buffer, pH 9.6 25

2.4.5.2 Tris-buffered saline (TBS), pH 7.5, 10X strength 25

2.4.5.3 TBSTwteen 20 25
2.4.5.4 Avidin stock solution, 1 mg/ml

2.4.5.5 Anti-digoxigenin-alkaline phosphatase antibody conjugate (Anti-dig-AP)

2.4.5.6 Substrate solution

2.5 Sterilization

2.6 Contamination-free environment for PCR

2.7 Extraction of genomic DNA from M. leprae by the method of Jamil et al. (1994)

2.8 Extraction of genomic DNA from M. leprae by the method of Woods and Cole (1989)

2.9 Preparation of OTN PCR working solution by the method of Jamil et al. (1994)

2.10 Cycle parameters of OTN PCR by the method of Jamil et al. (1994)

2.11 Preparation of PCR working solution by the method of Woods and Cole (1991)

2.12 Cycle parameters of PCR by the method of Woods and Cole (1991)

2.13 Agarose gel electrophoresis (Sambrook et al., 1989)

2.14 Colorimetric detection of OTN PCR product by the method of Jamil et al. (1994)

2.14.1 Coating of microtiter plate

2.14.2 Detection of OTN PCR product

2.15 Dilution of MFPH samples which gave negative result by the PCR method of Woods and Cole (1991)
2.16 Reamplification with dilutions of the reaction mixture from the first PCR by the method of Woods and Cole (1991)

2.17 Detection of inhibitor by internal control (IC) test on HSPB and HSPBH samples which gave negative result after the first colorimetric OTN PCR

2.18 Colorimetric OTN PCR by using double amount of Taq DNA polymerase

CHAPTER THREE : RESULTS

3.1 Extraction of *M. leprae* genomic DNA

3.2 Comparison of the two extraction methods of *M. leprae* genomic DNA by PCR amplification (Woods and Cole, 1991)

3.3 PCR with different sets of primers by the method of Woods and Cole (1991)

3.4 Modifications of the parameters of PCR with primers C6 and C7 by the method of Woods and Cole (1991)

3.5 PCR with different combinations of primer sets by the method of Woods and Cole (1991)

3.6 Modifications of the reaction volume of PCR by the method of Woods and Cole (1991)

3.7 OTN PCR by the method of Jamil et al. (1994)

3.8 Sensitivity of PCR assay by the method of Woods and Cole (1991) on purified *M. leprae* genomic DNA

3.9 Sensitivity of colorimetric OTN PCR assay by the method of Jamil et al. (1994) on purified *M. leprae* genomic DNA
3.10 Evaluation of PCR-based methods for the detection of *M. leprae* in HSPB samples and MFPHs

3.10.1 Human skin punch biopsy (HSPB) samples and homogenate (HSPBH)

3.10.2 Mouse foot-pad homogenates (MFPHs)

3.10.2.1 Genomic DNA from MFPHs: Comparison of different reaction volumes of PCR by the method of Woods and Cole (1991)

3.10.2.2 Genomic DNA from MFPHs: Comparison of the PCR methods of Woods and Cole (1991) and Jamil *et al.*, (1994)

3.10.3 PCR amplification (Woods and Cole, 1991) with 1/5, 1/10, and 1/20 dilutions of DNA extracted form MFPH of an *M. leprae*-infected mouse

3.10.3.1 Dilution of MFPH samples which did not amplify by the PCR method of Woods and Cole (1991)

3.10.4 Reamplification with dilutions of the reaction mixture form the first PCR by the method of Woods and Cole (1991)

3.11 Examination of human skin punch biopsy (HSPB) samples by the colorimetric OTN PCR (Jamil *et al.*, 1994)

3.11.1 HSPB samples from the NLCC, S.B: Details of samples and results of colorimetric OTN PCR

3.11.2 HSPB samples collected from Sabah and Sarawak in a surveillance study: Details of samples and results of colorimetric OTN PCR

3.11.3 Results of colorimetric OTN PCR with DNA from HSPB samples sent by private clinics
3.12 Examination of HSPBH samples by the colorimetric OTN PCR (Jamil et al., 1994) 71

3.13 Comparison of the results of colorimetric OTN PCR (Jamil et al., 1994) and the ELISA (Enzyme-linked immunosorbant assays) (Gan, 1993) on samples collected from Sabah and Sarawak in the surveillance study 71

CHAPTER FOUR : DISCUSSION AND CONCLUSION 74

4.1 Comparison of two extraction methods of M. leprae genomic DNA 74

4.2 Comparison of three sets of primers used in PCR amplification by the method of Woods and Cole (1991) 75

4.3 Modifications of the reaction volume of PCR by the method of Woods and Cole (1991) 76

4.4 Colorimetric OTN PCR by the method of Jamil et al. (1994) 77

4.5 Sensitivity of PCR assay by the methods of Woods and Cole (1991) and Jamil et al. (1994) on purified M. leprae genomic DNA 78

4.6 Evaluation of PCR-based methods for the detection of M. leprae 79

4.6.1 Comparison of the PCR methods of Woods and Cole (1991) and Jamil et al. (1994) on human skin punch biopsy (HSPB) samples and mouse foot-pad homogenates (MFPHs) 79

4.6.1.1 Human skin punch biopsy (HSPB) samples 79

4.6.1.2 Mouse foot-pad homogenates (MFPHs) 79

4.6.2 Dilution of MFPHs which did not amplify by the PCR method of Woods and Cole (1991) 81
4.6.3 Reamplification with dilutions of the reaction mixture from the first PCR by the method of Woods and Cole (1991) 81

4.7 Examination of HSPB samples by the colorimetric OTN PCR (Jamil et al., 1994) 82

4.7.1 HSPB samples from the NLCC, S.B. 82

4.7.2 HSPB samples from Sabah and Sarawak 83

4.7.3 HSPB samples from private clinics 84

4.8 Amplification of the DNA extracted from HSPBs by the colorimetric OTN PCR (Jamil et al., 1994) 84

4.9 Comparison of the results of colorimetric OTN PCR (Jamil et al., 1994) and ELISA on samples collected from Sabah and Sarawak 85

4.10 General conclusion 85

REFERENCES 86
ABBREVIATIONS

Most of the abbreviations used are standard. However, attention is drawn to the following:

% ------------------------- percentage
v/v ---------------------- volume per volume
w/v --------------------- weight per volume
A_{260} ------------------ absorbance at 260 nm
Ab ---------------------- antibody
AFB ---------------------- acid-fast bacillus
Anti-dig-Ap -------------- anti-digoxigenin-alkaline phosphatase
BB ---------------------- mid-borderline leprosy
BC ---------------------- before Christ
BI ---------------------- bacteriological index; bacterial index
BL ---------------------- borderline lepromatous leprosy
bp ---------------------- base pair
BPB --------------------- bromophenol blue
BT ---------------------- borderline tuberculoid leprosy
CMI --------------------- cell mediated immunity
Da ---------------------- Dalton
dATP -------------------- deoxyadenosine 5'-triphosphate
dCTP -------------------- deoxycytidine 5'-triphosphate
DDS -------------------- daminodiphenyl sulphone; dapsone
dGTP -------------------- deoxyguanosine 5'-triphosphate
dH_{2}O ------------------ distilled water
DMSO -------------------- dimethyl sulfoxide
DNA --------------------- deoxyribonucleic acid
dNTPs --------------- deoxyribonucleoside 5'-triphosphates
dTTP ------------------- deoxythymidine 5'-triphosphate
EDTA ------------------- ethylenediamine tetraacetate
e.g. ------------------- for example
ELISA ------------------- Enzyme-linked Immunosorbent Assays
EtBr --------------------- ethidium bromide
Fig. ------------------- Figure
g ---- grammes
G+C ------------ guanine plus cytosine ratio
h ------------ hour
HPLC ----------- high-performance liquid chromatography
HSPB ------------ human skin punch biopsy
HSPBH ----------- human skin punch biopsy homogenate
I ------------ indeterminate leprosy
i.e. ------------ that is
IC ------------ internal control
Ig ------------ immunoglobulin
I.M.R. ------------ Institute for Medical Research
kb ------------ kilobase pair or kilobase
kD ------------ kilo-dalton
LAM-B ----------- lipoarabinomannan B
LL ----------- full lepromatous leprosy
M ------------ molar
MB ----------- multibacillary
MDT ----------- multiple drug therapy
MFP ------------ mouse foot-pad
MFPH ----------- mouse foot-pad homogenate
mg ------------ milligramme
MI ------------ morphological index
min ------------ minute
ml ------------ millilitre
MLPA ----------- *Mycobacterium leprae* gelatin particle agglutination test
mM ------------ millimolar
mm ------------ millimetre
MW ------------ molecular weight
N ------------ Normal
NA ------------ not available
no. ------------ number
NLCC, S.B. ---- National Leprosy Control Centre, Sungai Buluh
nm ------------ nanometre
OD ------------ optical density
oligo ----------- oligonucleotide
OTN PCR -------- one-tube nested PCR
PB ------------------- paucibacillary
PBS ------------------- phosphate-buffered saline
PCR ------------------- polymerase chain reaction
PGL-I ----------------- phenolic glycolipid I
psi ------------------- pound per square inch
RNA ------------------- ribonucleic acid
rpm ------------------- revolutions per minute
s ------------------- second
s.d. ------------------- standard deviation
TBE ------------------- Tris-borate-EDTA
TBS ------------------- Tris-buffer saline
Tm ------------------- melting (or midpoint) temperature; thermal denaturation
Tris ------------------- Tris (hydroxymethyl) methylamine
TT ------------------- full tuberculoid leprosy
USA ------------------- United States of America
UV ------------------- ultraviolet
V ------------------- volt
WHO ------------------- World Health Organization
°C ------------------- degree Celsius
µg ------------------- microgramme
µl ------------------- microlitre
µm ------------------- micrometre
fg ------------------- femtogramme
pg ------------------- picogramme
+ ve ------------------- positive
- ve ------------------- negative
& ------------------- and
LIST OF FIGURES

Figure 1: The course after infection with *M. leprae*. Adapted from Hastings (1985) 6

Figure 2: The five groups of leprosy with their bacteriological index (BI) and cell-mediated immunity (CMI) response. Modified from Bryceson and Pfaltzgraff (1990) 7

Figure 3: Diagrammatic representation of the positions of different RLEP primer sets. MLO1 & MLO2 are outer primers used to generate 455 bp fragment, and MLI1D & MLI2B or MLI3 & MLI4 are inner primers which give 320 bp of amplified product. Modified from Jamil et al. (1994) 16

Figure 4: Illustration of the one-tube nested (OTN) PCR and colorimetric detection protocols. B, biotin; D, digoxigenin; A, avidin; Ab/Abp, anti-digoxigenin antibody-alkaline phosphatase conjugate. Modified from Wilson et al. (1993) 17

Figure 5: EtBr-stained agarose gel (0.8%, w/v) of 10 μl of each genomic DNA extracted from human skin punch biopsy (HSPB) samples and mouse foot-pad homogenates (MFPHs). 35

Figure 6: EtBr-stained agarose gel (2%, w/v) of PCR products (372 bp) after amplification with primers R1 and R2. 36

Figure 7: EtBr-stained agarose gel (2%, w/v) of PCR products after amplification with different sets of primers and DNA extracted by the method of Jamil et al. (1994). 38

Figure 8: EtBr-stained agarose gel (2%, w/v) of PCR products (714 bp) after amplification with primers C6 and C7 by modified PCR parameters. 40
Figure 9: EtBr-stained agarose gel (2%, w/v) of PCR products after amplification with different combinations of primer sets.

Figure 10: EtBr-stained agarose gel (2%, w/v) of PCR products (372 and 714 bp) after amplification in 100 µl of total reaction volume.

Figure 11: EtBr-stained agarose gel (2%, w/v) of PCR products (372 and 714 bp) after amplification in 50 µl of total reaction volume.

Figure 12: EtBr-stained agarose gel (2%, w/v) of PCR products (372 and 714 bp) after amplification in 20 µl of total reaction volume.

Figure 13: EtBr-stained agarose gel (2%, w/v) of PCR products (372 and 714 bp) after amplification in 10 µl of total reaction volume.

Figure 14: EtBr-stained agarose gel (2%, w/v) of OTN PCR products (320, 363, 412, and 455 bp).

Figure 15: Colorimetric detection of OTN PCR products.

Figure 16: EtBr-stained agarose gel (2%, w/v) of PCR products (372 and 714 bp) of sensitivity assay.

Figure 17: Determination of OTN PCR sensitivity by colorimetric detection.

Figure 18: EtBr-stained agarose gel (2%, w/v) of PCR products after amplification with primer combination of R1 & R2 and C6 & C7 by the method of Woods and Cole (1991).

Figure 19: EtBr-stained agarose gel (2%, w/v) of PCR products (372 and 714 bp) after amplification by the method of Woods and Cole (1991) on diluted MFPH samples.

Figure 20: EtBr-stained agarose gel (2%, w/v) of PCR products (372 and 714 bp) after reamplification by the method of Woods and Cole (1991).
Figure 21: The BI and MI readings of 44 biopsy samples sent by the NLCC, S.B. (The BI and MI of two additional biopsy samples were not available.)
LIST OF TABLES

Table 1 : Total leprosy cases reported in Malaysia from 1985 to 1994. 15

Table 2 : Primers used in this study. 23

Table 3 : Master mixture of all necessary reagents for PCR by the method of Woods and Cole (1991). 30

Table 4 : Details on the leprosy patients and their PCR results. 53

Table 5 : Results of PCR with DNA from MFPHs in different total reaction volumes by the method of Woods and Cole (1991). 54

Table 6 : Details of the MFPHs and the PCR results. 56

Table 7 : Summary of the results in Table 6. 57

Table 8 : Comparison of the PCR amplification (Woods and Cole, 1991) on 1/5 diluted MFPH samples with the colorimetric OTN PCR (Jamil et al., 1994) and microscopic count. 61

Table 9 : Details of the 46 HSPB samples sent by the NLCC, S.B. 63

Table 10 : Disease classification of the 46 HSPB samples sent by the NLCC, S.B. 64

Table 11 : Colorimetric OTN PCR of the 46 HSPB samples from the NLCC, S.B. 64

Table 12 : Details of the HSPB samples negative by the colorimetric OTN PCR and the results of IC and 2 xTaq DNA polymerase tests. 67

Table 13 : Details of the 34 HSPB samples collected from Sabah and Sarawak in a surveillance study. 68
Table 14: Classification of the 33 HSPB samples collected from Sabah and Sarawak in a surveillance study.

Table 15: Colorimetric OTN PCR of the 34 HSPB samples collected from Sabah and Sarawak in a surveillance study.

Table 16: Colorimetric OTN PCR of the HSPB samples collected from two household contacts in Sabah and Sarawak.

Table 17: Colorimetric OTN PCR results of the HSPB samples sent by private clinics.

Table 18: Comparison of the PCR results of HSPB samples and their homogenates sent by the NLCC, S.B.

Table 19: Comparison of the results of colorimetric OTN PCR and ELISA on samples collected from Sabah and Sarawak.