TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
ABSTRAK
TABLE OF CONTENTS
LIST OF SCHEMESXII
LIST OF FIGURES
LIST OF TABLESXIX
LIST OF APPENDICES
ABBREVIATIONSXXII
CHAPTER 1. INTRODUCTION
1.1. Background
1.2. Problems to be addressed/and or hypothesis
1.3. General objectives
1.4. Specific objectives
1.5. Scope and limitations
1.6. Expected outputs
1.7. Thesis content
CHAPTER 2. STILBENE SYNTHESIS
2.1. Brief overview of stilbene monomer syntheses
2.1.1. Palladium-catalysed syntheses of stilbenes
2.1.1.1. Heck reaction
2.1.1.2. Decarbonylative Heck reaction
2.1.1.3. Heck-type decarboxylative coupling
2.1.1.4. Suzuki-Miyaura reaction
2.1.1.5. Stille reaction
2.1.1.6. Negishi cross-coupling
2.1.1.7. Tandem cross-metathesis (or silylative coupling) and Hiyama
coupling12
2.1.2. Non-palladium-catalysed syntheses of stilbenes
VI

2.1.2.1. Ni(0) or Cu(I) salts-catalysed vinylation	13
2.1.2.2. McMurry coupling	13
2.1.2.3. Ruthenium-catalysed cross-metathesis	14
2.1.2.4. Cobalt-catalysed Diels-Alder/Wittig olefination	15
2.1.2.5. Modified Perkin reaction	15
2.1.2.6. Horner-Wadsworth-Emmons olefination	16
2.1.2.7. Knoevenagel condensation	17
2.1.2.8. Lithium-mediated cross coupling	17
2.2. Results and discussion	18
2.2.1. Synthesis of stilbene building blocks 2.1, 2.38, 2.39, 2.40, 2.41,	
2.42, and 2.43	19
2.2.2. Synthesis of stilbenes possessing resorcinol (3,5-disubstitution) and	
the 3-substitution pattern (resveratrol analogues)	20
2.2.3. Spectroscopic evidence of stilbene analogues 1.2, 2.46-2.47, 2.48-	
2.49, 2.50-2.58 and 2.8.	24
2.3. Experimental section	25
2.3.1. Synthesis of protected iodophenol	26
2.3.1.1. Preparation of 4-iodophenylacetate 2.1	26
2.3.1.2. Preparation of 3-iodophenylacetate 2.38	27
2.3.2. Synthesis of protected 3,5-dihydroxybenzaldehyde	27
2.3.2.1. Preparation of 3,5-dibenzyloxybenzaldehyde 2.39	27
2.3.2.2. Preparation of 3,5-bis(<i>tert</i> -butyldimethylsilyloxy)benzalde-	
hyde 2.40	28
2.3.3. Synthesis of protected styrenes	29
2.3.3.1. Preparation of 3,5-bis(<i>tert</i> -butyldimethylsilyloxy)styrene 2.41	29
2.3.3.2. Preparation of 3,5-dimethoxy styrene 2.42	30
2.3.3.3. Preparation of 3,5-dibenzyloxy styrene 2.43	30
2.3.4. Synthesis of substituted stilbenes	31
2.3.4.1. Preparation of 2.46 & 1.2	31
2.3.4.2. Preparation of 2.47 & 2.49	32
2.3.4.3. Preparation of 2.8	33
2.3.4.4. Preparation of 2.51	34
2.3.4.5. Preparation of 2.48 & 2.50	34
2.3.4.6. Preparation of 2.52	35

2.3.4.7. Preparation of 2.56 & 2.53	36
2.3.4.8. Preparation of 2.58 & 2.54	37
2.3.4.9. Preparation of 2.57 & 2.55	38
2.4. References	40
CHAPTER 3. ELECTROCHEMICAL OXIDATIONS ON SOME STILBENE	
ANALOGUES	43
3.1. Introduction to stilbene oxidation and electrochemistry	43
3.1.1. Generalities on phenolic oxidation	44
3.1.2. Concepts on phenol electrochemical oxidation	47
3.2. Previous work on stilbene electrochemistry	50
3.3. Results and discussion	55
3.3.1. Measurement of oxidation potentials of stilbene derivatives	55
3.3.2. Anodic oxidation of para-hydroxy and- acetate stilbenes in	
CH ₂ Cl ₂ /MeOH	59
3.3.3. Constant current electrolysis of <i>para</i> hydroxy 2.56 and acetate 2.46	
stilbenes in pure CH ₂ Cl ₂	61
3.3.4. Spectroscopic evidence of stilbene adducts 3.41, 3.42, 3.44, 3.45,	
3.48 together with mixtures of 3.43a & 3.43b and 3.46a & 3.46b	62
3.3.5. Mechanistic discussion	63
3.4. Experimental section	68
3.4.1. Measurement of oxidation potentials of stilbene derivatives	68
3.4.2. Constant current electrolysis of stilbene derivatives	69
3.5. References	74
CHAPTER 4. SYNTHESIS OF NATURAL OLIGOMERIC STILBENOIDS	
AND ANALOGUES	76
4.1. Oligostilbenoid biomimetic syntheses	76
4.1.1. Biosynthesis of oligostilbenoids	77
4.1.2. Biotransformation and enzymatic coupling	79
4.1.2.1. Resveratrol, pterostilbene and their analogues	80
4.1.2.2. Oligostilbenoid/stilbene dimers	87
4.1.3. Oxidative coupling with Fe ³⁺	90
4.1.3.1. Resveratrol	90
4.1.3.2. Isorhapontigenin	91
4.1.3.3. Other stilbenes	92

4.1.3.4. Summary	94
4.1.4. Oxidative coupling with silver derivatives	95
4.1.4.1. Resveratrol	95
4.1.4.2. Isorhapontigenin	95
4.1.4.3. Piceatannol	96
4.1.4.4. Other stilbenoids	96
4.1.4.5. Viniferins	97
4.1.4.6. Summary	97
4.1.5. Dimerisation with other oxidants	98
4.1.5.1. Resveratrol	98
4.1.5.2. Summary	99
4.1.6. Chemical transformation of ε-viniferin and its derivatives	. 100
4.1.7. Stilbenes that fail to dimerise under oxidative conditions	. 101
4.1.8. Acid-catalysed dimerisation	. 102
4.1.8.1. Resveratrol and isorhapontigenin	. 102
4.1.8.2. Unnatural stilbenes	. 105
4.1.9. Acid catalysed cyclisation of stilbene oligomers	. 108
4.1.10. Stilbene photooxidation	. 109
4.2. Non biomimetic syntheses	. 111
4.3. Results and discussion	. 124
4.3.1. Oxidative coupling with Fe ³⁺	. 127
4.3.2. Oxidative coupling with Ag ⁺	. 129
4.3.3. Dimerization with other oxidants	. 130
4.3.4. Spectroscopic analysis	. 131
4.3.4.1. δ-Viniferin analogue 4.14	. 131
4.3.4.2. δ–Viniferin analogue 4.184	. 136
4.3.4.3. Tricuspidatol A analogue 3.47	. 138
4.3.4.4. Tetrahydronaphthalene 4.183	. 142
4.3.4.5. Trimeric compound 4.185	. 146
4.3.5. Mechanistic considerations	. 149
4.3.5.1. HSAB Principle	. 150
4.3.5.2. Oxidative coupling with soft acids	. 153
4.3.5.3. Oxidative coupling with hard acid single electron oxidants	. 154
4.3.5.4. Oxidative coupling with borderline acids	. 155
	IX

4.3.5.5. Effect of solvents and ligands on oxidants (metal ions)	
properties	156
4.3.5.6. δ-Viniferin analogues formation via AgOAc promoted	
oxidative coupling	159
4.3.5.7. δ -Viniferin analogues formation via FeCl ₃ oxidative coupling	160
4.3.5.8. Tricuspidatol-A like formation via FeCl ₃ oxidative coupling	162
4.3.5.9. Pallidol and ampelopsin F analogues formation via $FeCl_3$	
oxidative coupling	164
4.3.5.10. Tetralin analogues formation via FeCl ₃ oxidative coupling	173
4.3.5.11. Trimer with tetralin scaffold formation via PbO_2 oxidative	
coupling	178
4.3.5.12. Tetralin and indane scaffolds formation catalysed by Brönsted	
acids	183
4.3.5.13.Comparison of anodic vs FeCl ₃ .6H ₂ O oxidation of stilbenes	185
4.4. Conclusion	188
4.5. Experimental section	189
4.5.1. Oligomerisation of 12- hydroxy-3,5-dimethoxystilbene 1.2	189
4.5.1.1. Preparation of 4.14/4.185	189
4.5.1.2. Preparation of 4.180	192
4.5.1.3. Preparation of 4.181 & 4.182	192
4.5.2. Oligomerisation of 12-hydroxy-3-methoxystilbene 2.56	194
4.5.2.1. Preparation of 3.47	194
4.5.2.2. Preparation of 4.183/4.184	195
4.5.3. Oligomerisation of 2.52	199
4.5.3.1. Preparation of 1.4 and 1.0	199
4.5.4. Oligomerisation of 2.58	200
4.5.4.1. Preparation of 4.186	200
References	202
CHAPTER 5. MOLECULAR MODELING	207
5.1. Reminders on some general notions in physical chemistry	208
5.1.1. Enthalpy	208
5.1.2. Entropy	208
5.1.3. Gibbs free energy	208
5.2. Quantum mechanics	209
	Х

5.2.1. The Schrödinger equation	210
5.2.2. Calculation methods - Solving the Schrödinger equation for	
complex systems	211
5.2.2.1. Born-Oppenheimerøs approximation and methods of	
calculation	211
5.2.3. Electron spin and molecular orbitals	212
5.2.4. The Pauli exclusion principle	212
5.2.5. HartreeóFock method	213
5.2.5.1. Self-consistent field (SCF) theory	213
5.2.6. Basis sets	214
5.2.6.1. Polarized basis sets	214
5.2.6.2. Diffuse basis sets	215
5.2.7. Post-Hartree-Fock methods	216
5.2.8. Density functional theory (DFT)	217
5.2.9. Programs	217
5.2.9.1. Calculation of molecular properties from approximate	
molecular wave functions	218
5.3. General presentation of chemical interactions	219
5.3.1. Cation- π interactions	220
5.3.2. Polar- π interactions	221
5.3.3. Aromatic stacking interactions	222
5.3.3.1. A Set of rules	223
5.3.3.2. Effects of polarization between -systems polarized by	
heteroatoms	225
5.4. Methods and results: modeling of stilbenoids and their oxidized forms	231
5.4.1. Definition and calculation method of the bond dissociation energy	232
5.4.1.1. Bond dissociation energy calculation method	233
5.4.2. Definition and calculation method of the ionization potential	234
5.4.2.1. Ionization energy calculation method	234
5.4.3. Results and discussion	235
5.4.3.1. H atom transfer (HAT) mechanism and BDE calculations	236
5.4.3.2. Electron transfer mechanism and IP calculations	237
5.4.3.3. Conformational studies	238
5.4.3.4. Spin density	239

5.5. M	ethods and results: Modeling of stilbenes pairs	. 243
5.5.1	. Contribution of hydrogen bonding and - interactions in para	
	hydroxy-substituted stilbenes alignment	. 244
5.5.2	. Comparison of stability between head-to-head and head-to-tail	
	alignments of stilbenes	. 245
5.5.3	. Calculation results on various Re/Si approaches of pterostilbene	
	units	. 246
5.5.4	. Calculation results on various Re/Re approaches of pterostilbene	
	units	. 251
5.5.5	. Calculation results on various Re/Re approaches of demethoxy-	
	pterostilbene units with two methoxy groups aligned syn to each	
	other	. 254
5.5.6	. Calculation results on various Re/Re approaches of demethoxy-	
	pterostilbene units with two methoxy groups aligned anti to each	
	other	. 256
5.5.7	. Calculation results on various Re/Si approaches of demethoxy-	
	pterostilbene units with two methoxy groups were aligned anti to	
	each other	. 260
5.5.8	. Summary	. 262
5.5.9	. Study of oxidized stilbene species and their reactivities	. 264
5.	5.9.1. Pterostilbene/pterostilbene radical	. 264
5.	5.9.2. Pterostilbene radical/pterostilbene radical	. 265
5.	5.9.3. Demethoxy-pterostilbene/demethoxy-pterostilbene radical	. 266
5.	5.9.4. Demethoxy-pterostilbene radical/demethoxy-pterostilbene	
	radical	. 267
5.6. A	g ⁺ impact on its coordination with stilbene and the alignment of	
sti	lbenes	. 268
5.7. Re	eferences	. 271
CHAPTER	6. CONCLUSION	. 274
APPENDI	CES	. 277

LIST OF SCHEMES

Scheme 2.1: Palladium acetate catalysed Heck coupling	6
Scheme 2.2: Heck coupling catalysed by palladium cross linked polymer	6
Scheme 2.3: Stilbene synthesis through two sequential Heck-type reactions	7
Scheme 2.4: Synthesis of resveratrol via decarbonylative Heck reactions.	8
Scheme 2.5: Stilbene synthesis through Heck-type decarboxylative coupling	9
Scheme 2.6: Catalytic cycle involved in Suzuki-Miyaura reaction	9
Scheme 2.7: Stilbene synthesis promoted by Suzuki-Miyaura coupling	10
Scheme 2.8: Catalytic cycle involved in Suzuki-Miyaura reaction.	10
Scheme 2.9: Stilbene synthesis by Stille coupling	11
Scheme 2.10: Catalytic cycle involved in Negishi cross-coupling.	11
Scheme 2.11: Stilbene synthesis by Negishi cross-coupling	12
Scheme 2.12: Stilbene synthesis by Himaya coupling	12
Scheme 2.13: Cu(I) and Ni(0) catalysed couplings in stilbene synthesis	13
Scheme 2.14: Mechanism of the McMurry coupling	13
Scheme 2.15: McMurry coupled aldehydes to stilbene derivatives	14
Scheme 2.16: Synthesis of (<i>E</i>)-hydroxystilbenoids by metathesis.	15
Scheme 2.17: Stilbene synthesis by Co-catalysed Diels-Alder/Wittig olefination	15
Scheme 2.18: Hydroxylated stilbene synthesis via a modified Perkin reaction	16
Scheme 2.19: Stilbene synthesis through Horner-Wadsworth-Emmons	
olefinations between aldehydes and phosphonates	17
Scheme 2.20: Knoevenagel condensation for preparing stilbenes with electron	
withdrawing groups	17
Scheme 2.21: Preparation of resveratrol through Li-mediated coupling	18
Scheme 2.22: Proposed synthetic plan of stilbene derivatives.	18
Scheme 2.23: Heck catalytic cycle	22
Scheme 2.24: Mechanism of the Heck coupling.	24
Scheme 3.1: Phenol oxidation producing ArOH ^{+E} , ArO ^E or ArO ⁺	45
Scheme 3.2 : Electrochemical mechanistic considerations for intermediates ArO ^E , ArO ⁺ , or ArOR ^{+É} in various conditions	49
Scheme 3.3: Anodic oxidative dimerization of 4,12-dimethoxystilbene in acetate	
buffer	51
Scheme 3.4: Anodic oxidative dimerization of 4,12-dimethoxystilbene in	
presence and absence of MeOH	52
Scheme 3.5: Anodic oxidation of stilbene derivative at constant potential and	
itøs mechanistic consideration	53
Scheme 3.6: Electrochemical oxidation of stilbene derivatives in presence of	
nucleophile	53
Scheme 3.7: Possible mechanistic pathways of episulfonium ion intermediate	
3.30	54
Scheme 3.8: Electro reduction of stilbene	54
Scheme 3.9: Mechanistic consideration of stilbene electrochemical reduction in	
presence of solvent THF	55

Scheme 3.10	: Two electron anodic oxidation of stilbenoid under neutral	
~	condition	56
Scheme 3.11	: Anodic oxidation of stilbene derivatives producing stilbene	
G L 2 12	adducts	60
Scheme 3.12:	Anodic oxidation of 2.56 producing dimerised compound 3.47	61
Scheme 3.13:	Anodic oxidation of 2.46 produced halogenated monomer 3.48	61
Scheme 3.14:	CLI CL and CLI Cl (MaOLI minture)	65
Sahama 2 15	CH ₂ Cl ₂ and CH ₂ Cl ₂ /MeOH mixture)	03
Scheme 5.15	2 46 in CH.Cl.	66
Schome 316	2.40 III CH_2CH_2	00
Scheme 5.10	produce halogenated product 3 48	67
Scheme 4.1	Synthesis of usnic acid	07
Scheme 4.2	Sotheeswaran & Pasupathyøs proposed biosynthesis of	•••••
Sellenie 112.	hopeaphenol 1.8	78
Scheme 4.3:	Revised proposal for the biosynthesis of hopeaphenol 1.8 through	
	ε-viniferin 1.4	79
Scheme 4.4:	Conversion of resveratrol into it dimers by peroxidases from	
	different sources.	80
Scheme 4.5:	Proposed radical intermediates involved in resveratrol oxidative	
	coupling	81
Scheme 4.6:	Synthesis of quadrangularin A 4.10 from substituted resveratrol	
	4.8	82
Scheme 4.7:	Oxidation of resveratrol 1.0 <i>via</i> COX-1 peroxidase.	83
Scheme 4.8:	Dimerisation of pterostilbene 1.2.	85
Scheme 4.9:	Stilbene dimerisation by laccases from two different fungi T.	05
C. h	pubescens and M. thermophyla	85
Scheme 4.10:	Stildene dimerisation by faccase from <i>1. pubescens</i>	87
Scheme 4.11:	Biotransformation products of ε -viniterin by HRP/H ₂ O ₂ ; *1.4 was	00
Schomo 1 12.	Subjected to AgoAc III dry Intellation, see section 5.4.5	00
Scheme 4.12.	1 0	80
Scheme 4.13	Fe^{3+} oxidative coupling of resveratrol	07 91
Scheme 4.14	Oxidation of isorhapontigenin into its oligomers	92
Scheme 4.15:	Generation of pallidol and ampelopsin F analogues in	
	FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture.	93
Scheme 4.16:	Synthesis of dihydronaphthalene based stilbene dimers in	
	FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture	94
Scheme 4.17:	Synthesis of cassigarols E and G.	96
Scheme 4.18:	Synthesis of (±)-maackin	97
Scheme 4.19:	Synthesis of ε - and δ -viniferins in metallic and organic oxidative	
	conditions	99
Scheme 4.20:	Oxidation of ϵ -viniferin pentaacetate 4.52 into amurensin H 4.54	100
Scheme 4.21:	Protection and isomerisation of ε -viniferin	100
Scheme 4.22:	Cyclization of ε-viniferin derivatives in basic medium	101
Scheme 4.23:	Intramolecular oxidative coupling of stilbene analogues by	
	VOCl ₃ .	102
Scheme 4.24:	Treatment of resveratrol and isorhapontigenin with formic acid	. 103
Scheme 4.25:	Alignment of stilbenes leading to dimerisation.	104
Scheme 4.26:	α realment of resperation and piceatannol with NaNO ₂	104

Scneme 4.2/:	Formation of indane and tetralin skeletons via EPP oxidative	
	coupling	105
Scheme 4.28:	Synthesis of tetralin skeleton by BBr ₃	106
Scheme 4.29:	Formation of tetralin and indane skeletons <i>via</i> MPA/S and TPA/S	105
~	oxidative coupling	107
Scheme 4.30:	Acid catalysed cyclisation of ε -viniferin.	108
Scheme 4.31:	Acid catalysed cyclisation of vitisin A and B	109
Scheme 4.32:	Photooxidation of ε -viniferin.	110
Scheme 4.33:	Photooxidation of stilbene dimers and trimers	111
Scheme 4.34:	Construction of epoxide 4.124 and hexacyclic intermediate 4.126	113
Scheme 4.35:	I otal synthesis of tetramethyl hopeanainol A 4.129, hopeanainol	114
Sahama 12(A 4.151, and nopeanol 4.152	114
Scheme 4.50:	(4.107, 4.140 and 4.109) from law building block 4.123	116
Sahama 1 37.	(4.107, 4.140 and 4.106) from Key building block 4.155	110
Scheme 4.57.	(4.6 and 4.142) from key building block 4.141	117
Scheme 4 38.	Sequential cascade-based balogenation to access pallidol 1.6	117
Scheme 4 39	Sequential cascade-based halogenation to access painton 1.0	117
Seneme 4.07.	15	118
Scheme 4.40:	Alternate use of key intermediate 4.147 to access the unique	110
	architectures of related nonnatural products (such as 4.152).	. 119
Scheme 4.41:	Synthesis of potential precursors for natural products.	120
Scheme 4.42:	Synthesis of malibatol A analogue 4.164	121
Scheme 4.43:	Synthesis of amurensin H.	122
Scheme 4.44:	Synthesis of viniferifuran analogue 4.169	123
Scheme 4.45:	Synthesis of malibatol A 4.179 and shoreaphenol 4.178 analogues	124
0 1 446		
Scheme 4.46:	Summary of synthesized oligostilbenoids via chemical oxidation	126
Scheme 4.46: Scheme 4.47:	Synthesis of tricuspidatol A analogues in	126
Scheme 4.46: Scheme 4.47:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture	126 127
Scheme 4.46: Scheme 4.47: Scheme 4.48:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in	126 127
Scheme 4.46: Scheme 4.47: Scheme 4.48:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture	126 127 128
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based	126 127 128
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture	126 127 128 128
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.49:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation	126 127 128 128 128 129
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.50: Scheme 4.51: Scheme 4.51:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ-viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO of stilbenes 1.2, 2.58 and 2.56	126 127 128 128 128 129 129
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56	126 127 128 128 129 129 130
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ-viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2 56	126 127 128 128 128 129 129 130
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.53:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56	126 127 128 128 129 129 129 130 131
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.53:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ-viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation	126 127 128 128 129 129 129 130 131 150
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.53:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group.	126 127 128 128 129 129 129 130 131 150 154
Scheme 4.46: Scheme 4.47: Scheme 4.48: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture. Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group Stilbene dimer skeletons produced by hard acid treatment of	126 127 128 128 129 129 129 130 131 150 154
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture. Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials.	126 127 128 128 129 129 129 129 130 131 150 154 155
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55: Scheme 4.56:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture. Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials. Stilbene dimer skeletons produced by treatment of stilbenes with	126 127 128 128 129 129 129 129 130 131 150 154 155
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55: Scheme 4.56:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials Stilbene dimer skeletons produced by treatment of stilbenes with borderline acids	126 127 128 128 128 129 129 129 129 129 130 131 150 154 155 156
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55: Scheme 4.56: Scheme 4.57: Scheme 4.58:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture. Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ-viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials. Stilbene dimer skeletons produced by treatment of stilbenes with borderline acids Treatment of resveratrol and isorhapontigenin by FeCl ₃ .6H ₂ O and	126 127 128 128 129 129 129 129 129 130 131 150 154 155 156
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55: Scheme 4.55: Scheme 4.55:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ -viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials Stilbene dimer skeletons produced by treatment of stilbenes with borderline acids Treatment of resveratrol and isorhapontigenin by FeCl ₃ .6H ₂ O and K ₃ [Fe(CN) ₆] in various solvents	126 127 128 128 129 129 129 129 129 129 129 129 129 129 130 131 150 155 156 157
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.55: Scheme 4.55: Scheme 4.56: Scheme 4.57: Scheme 4.58: Scheme 4.59.	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ-viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials Stilbene dimer skeletons produced by treatment of stilbenes with borderline acids Treatment of resveratrol and isorhapontigenin by FeCl ₃ .6H ₂ O and K ₃ [Fe(CN) ₆] in various solvents Acetone/water exchange in Fe ³⁺ complexes	126 127 128 128 128 129 129 129 129 129 129 129 130 131 150 155 156 157 158
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.53: Scheme 4.55: Scheme 4.55: Scheme 4.56: Scheme 4.57: Scheme 4.58: Scheme 4.59. Scheme 4.60:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture	126 127 128 128 129 129 129 129 129 129 129 129 129 130 131 150 154 155 156 157 158
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55: Scheme 4.55: Scheme 4.57: Scheme 4.58: Scheme 4.59. Scheme 4.60:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture. Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ-viniferin analogues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Single electron oxidation with soft acid treatment stilbene incorporating a C12-OH group Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials. Stilbene dimer skeletons produced by treatment of stilbenes with borderline acids Treatment of resveratrol and isorhapontigenin by FeCl ₃ .6H ₂ O and K ₃ [Fe(CN) ₆] in various solvents. Acetone/water exchange in Fe ³⁺ complexes. Oxidation of 12-OH-stilbenes and alignment of the reacting species leading to δ-viniferin type dimers.	126 127 128 128 129 129 129 129 129 129 129 129 129 129 130 131 150 154 155 156 157 158 160
Scheme 4.46: Scheme 4.47: Scheme 4.47: Scheme 4.49: Scheme 4.49: Scheme 4.50: Scheme 4.50: Scheme 4.51: Scheme 4.52: Scheme 4.53: Scheme 4.54: Scheme 4.55: Scheme 4.55: Scheme 4.57: Scheme 4.58: Scheme 4.59. Scheme 4.60: Scheme 4.61:	Summary of synthesized oligostilbenoids <i>via</i> chemical oxidation Synthesis of tricuspidatol A analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ /MeOH mixture Generation of pallidol and ampelopsin F analogues in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture Synthesis of tetrahydronapthalene and dihydronaphthalene based stilbene dimers in FeCl ₃ .6H ₂ O/CH ₂ Cl ₂ mixture. Synthesis of -viniferin <i>via</i> FeCl ₃ .6H ₂ O oxidation Synthesis of δ-viniferin <i>na</i> logues by AgOAc oxidative coupling Oxidative coupling by PbO ₂ of stilbenes 1.2 , 2.58 and 2.56 Tetralin and tricuspidatol A analogues as oxidative coupling products from stilbene 2.56 Acid base complex formation Stilbene dimer skeletons produced by hard acid treatment of various stilbene starting materials. Stilbene dimer skeletons produced by treatment of stilbenes with borderline acids. Treatment of resveratrol and isorhapontigenin by FeCl ₃ .6H ₂ O and K ₃ [Fe(CN) ₆] in various solvents. Acetone/water exchange in Fe ³⁺ complexes. Oxidation of 12-OH-stilbenes and alignment of the reacting species leading to δ -viniferin type dimers. Oxidation of <i>para</i> oxygenated stilbenes by FeCl ₃ .6H ₂ O.	126 127 128 128 128 129 129 129 129 129 129 129 129 130 131 150 155 156 157 158 160 161

Scheme 4.62: Mechanism of the formation of ε-viniferin 1.4 from resveratrol
1.0
Scheme 4.63: Proposed mechanism of the formation of tricuspidatol A
analogues 3.47 and 4.180
Scheme 4.64: Proposed transient species upon single electron oxidation of
stilbenes
Scheme 4.65: <i>Re/Si</i> and <i>Re/Re</i> (or <i>Si/Si</i>) approaches of reacting stilbenes leading
to pallidol and ampelopsin F analogues respectively in one-pot
reaction
Scheme 4.66: Obtention of pallidol and ampelopsin F analogues from 4,12-
dioxygenated stilbene 4.40
Scheme 4.67: Radical cation intermediates en route to pallidol analogue 4.181
from pterostilbene 1.2
Scheme 4.68: equilibrium between stable 4.213 and unstable 4.214 radical
cations
Scheme 4.69: Formation of ampelopsin F analogue 4.182 from pterostilbene 1.2
through the addition of radical cations 4.213 and 4.214
Scheme 4.70: Mechanism of the formation of tetralin 4.183 from
demethoxypterostilbene 2.56 .
Scheme 4.71: Tetralin 4.183 formation <i>via</i> Diels Alder cycloaddition
Scheme 4.72: Revised mechanism for the formation of a stillbene tetramer <i>via</i> a
Diels-Alder cycloaddition of isorhapontigenin 1.1 (modified from
reference 24).
Scheme 4.73: Mechanism of formation of restruction C analogues 4.44 and 4.45
(adapted from reference 26)
Scheme 4.74: Alternative mechanism of formation of restruction C analogue
4.44
Scheme 4.75: Formation of δ -viniferin skeleton <i>via</i> PbO ₂ oxidative coupling 179
Scheme 4.76: Formation of tetralin skeleton <i>via</i> PbO ₂ oxidative coupling 182
Scheme 4 77: Acid catalysed stillbene dimerisation products (adapted from
references 33 35-37) 183
Scheme 4 78: Various nathways leading to indane and tetralin skeletons through
acid-catalysed dimerisation of 3.4-dimethoxystilbenes (adapted
from reference 35)
Scheme 4.79: Comparison of stilbene derivatives electrochemical oxidation with
FeCl ₂ 6H ₂ O oxidation in a mixture of CH ₂ Cl ₂ /MeOH 186
Scheme 4 80: Comparison of stillbene derivatives electrochemical oxidation with
FeCl ₂ $6H_2O$ oxidation in CH ₂ Cl ₂ 187
Scheme 5 1: H atom transfer mechanism of stilbenoid 236
Scheme 5.2: Electron transfer mechanism for stilbenoid 237

LIST OF FIGURES

Figure 2.1:	Synthesised building blocks of stilbenoids	20
Figure 2.2:	Synthesised fully and partially protected resveratrol analogues	
	with 3,5-substitution pattern.	21
Figure 2.3:	Synthesised fully and partially protected resveratrol analogues	
	with 3-substitution pattern.	22
Figure 3.1(a-	h): Cyclic voltammograms (CV) of various substituted stilbene	
	derivatives	57
Figure 3.2: P	ossible enantiomeric and diastereomeric pairs	62
Figure 4.1: (2	Z)-δ-viniferin 1.3b	81
Figure 4.2: S	structures of restrytisol A 4.11, restrytisol B 4.12 and restrytisol C	
	4.13	84
Figure 4.3: M	Iain HMBC correlations for 4.14	133
Figure 4.4: A	M1 calculation for 4.14	134
Figure 4.5: M	Iain HMBC correlations for 4.184	136
Figure 4.6: M	Iain HMBC correlations for 3.47	139
Figure 4.7: A	M1 calculation of tricuspidatol A analogue 3.47	140
Figure 4.8: M	Iain HMBC and long range COSY correlations for 4.183	143
Figure 4.9: C	omputational model of 4.183	145
Figure 4.10:	Main HMBC correlations for 4.185	147
Figure 4.11:	Metal-olefin bonding model	159
Figure 4.12:	Four different <i>Re/Re</i> (or <i>Si/Si</i>) alignments for 2.56	175
Figure 5.1: S	implified diagram of the linear combination of s and p orbitals	215
Figure 5.2: N	Mathematical representation of a (a) õclassicalö Gaussian function	
	and (b) a diffuse Gaussian function	216
Figure 5.3: B	inding energies for simple cations to benzene in gas phase	221
Figure 5.4 : π	Hydrogen bonds	221
Figure 5.5: A	.n sp ² hybridised atom in a π -system	222
Figure 5.6:	Model for an atom which contributes one electron to the	
	molecular π -system; projection parallel to the plane of the π -	
	system	223
Figure 5.7:	Interaction between two idealized π -atoms as a function of	
0	orientation: two attractive geometries and the repulsive face-to-	
	face geometry are illustrated. (y-axis: angle of anti-clockwise	
	rotation about the central positive charge of the upper π -atom; x-	
	axis: offset toward the right-hand side of the diagram)	224
Figure 5.8: E	dge-on or T-shaped geometry	225
Figure 5.9: F	ace-to-face π -stacked geometry	226
Figure 5.10:	Orientations for the π - π interactions between polarized π -systems.	
0	R_1 and R_2 are the polarizing groups	229
Figure 5.11:	Limit structures possible for edge-to-face aromatic interactions: a)	-
0	T-shaped, b) edge-tilted-T, and c) face-tilted-T	230

Figure 5.12:	Schematic representation of the angle θ and distances d ₁ -d ₄ used	
	for describing edge-to-face interactions	230
Figure 5.13: (Optimised geometries of stilbene derivatives after calculations	236
Figure 5.14: S	SOMO (singlet Occupied Molecular Orbital) of resveratrol radical	239
Figure 5.15: S	Spin densities of stilbenoid radicals and radical cations	241
Figure 5.15 (c	cont'd): Spin densities of stilbenoid radicals and radical cations	242
Figure 5.15 (c	cont'd): Spin densities of stilbenoid radicals and radical cations	243
Figure 5.16: I	nfluence of the hydroxyls on the stacking of a stilbene pair	245
Figure 5.17: I	nfluence of geometry type on stilbene alignment	245
Figure 5.18:	Calculation results on Re/Si approaches of pterostilbene-	
	pterostilbene radical.	265
Figure 5.19:	Calculation result on <i>Re/Re</i> approaches of pterostilbene radical-	
	pterostilbene radical.	266
Figure 5.20:	Calculation result on <i>Re/Re</i> approaches of	
	demethoxypterostilbene- demethoxypterostilbene radical	267
Figure 5.21:	Calculation result on Re/Re approaches of	
	demethoxypterostilbene radical- demethoxypterostilbene radical	268
Figure 5.22: S	Stilbene-Ag ⁺ model	268
Figure 5.23:	LUMO, HOMO, HOMO-1 and HOMO-2 of stilbene-Ag ⁺	
	complex.	269
Figure 5.24:	Calculated distance between stack of stilbenoids with and without	
-	Ag ⁺	270

LIST OF TABLES

Table 3.1: Oxidation potentials of various substituted stilbene derivatives 59
Table 4.1 : ¹ H-(300 MHz) and ¹³ C-(75 MHz) NMR data 4.14
Table 4.2: ¹ H-(500 MHz) and ¹³ C-(125 MHz) NMR data of 4.184 137
Table 4.3 : ¹ H-(300 MHz) and ¹³ C-(75 MHz) NMR data of 3.47
Table 4.4 : ¹ H-(500 MHz) and ¹³ C-(125 MHz) NMR data of 4.183
Table 4.5: Computed dihedral angles and measured coupling constants for
protons of the central ring of 4.183
Table 4.6: ¹ H-(400 MHz) and ¹³ C-(125 MHz) NMR data of 4.185
Table 4.7: Hard, borderline and soft acids and bases. ⁵² 152
Table 5.0 : Electrostatic contribution to π -stacking interactions between
polarised π -systems (in kJ/mol). ⁹
Table 5.1: Calculated BDE for some of the stilbenoids
Table 5.2: IP values of stilbenoids 238
Table 5.3: Torsion angles values for stilbenoids. 239
Table 5.4 : Calculation results on various <i>Re/Si</i> approaches of pterostilbene units 249
Table 5.6 (cont'd): Calculation results on various <i>Re/Re</i> approaches of
pterostilbene units
Table 5.5: Measured distances between selected atoms from alignment 5.1-5.5
Table 5.6 : Calculation results on various <i>Re/Re</i> approaches of pterostilbene
units
Table 5.6 : Calculation results on various <i>Re/Re</i> approaches of pterostilbene
units
Table 5.7 : Calculation results on various <i>Re/Re</i> approaches of demethoxy-
pterostilbene units with two methoxy groups aligned syn to each
other
Table 5.7 (cont'd): Calculation results on various <i>Re/Re</i> approaches of deme-
thoxypterostilbene units with two methoxy groups aligned syn to
each other
Table 5.8 : Calculation results on various <i>Re/Re</i> approaches of demethoxy-
pterostilbene units with two methoxy groups aligned anti to each
other
Table 5.8 : Calculation results on various <i>Re/Re</i> approaches of demethoxy-
pterostilbene units with two methoxy groups aligned anti to each
other
Table 5.9: Calculation results on various <i>Re/Si</i> approaches of demethoxy-
pterostilbene units with two methoxy groups aligned anti to each
other
Table 5.9 (cont'd): Calculation results on various <i>Re/Si</i> approaches of deme-
thoxypterostilbene units with two methoxy groups aligned anti to
each other

LIST OF APPENDICES

Appendix 1: ¹ H NMR (300 MHz, CDCl ₃) spectrum of 4-iodophenyl acetate 2.1	277
Appendix 2: ¹ H NMR (300 MHz, CDCl ₃) spectrum of 3-iodophenyl acetate	
2.38.	278
Appendix 2b: ¹ H NMR (300 MHz, CDCl ₃) enlargement (7.0-7.6 ppm) spectrum	• - •
of 3-iodophenyl acetate 2.38	279
Appendix 3: ¹ H NMR (300 MHz, CDCl ₃) spectrum of 3,5-	
bis(benzyloxy)benzaldehyde 2.39	280
Appendix 4: ¹ H NMR (300 MHz, CDCl ₃) spectrum of 3,5-bis(tert-	
butyldimethysilyloxy)benzaldehyde 2.40	281
Appendix 5: ¹ H NMR (400 MHz, CDCl ₃) spectrum of (5-vinyl-1,3-	
phenylene)bis(oxy)bis(tert-butyldimethylsilane) 2.41	282
Appendix 6: ¹ H NMR (300 MHz, CDCl ₃) spectrum of 3,5-dimethoxystyrene	
2.42	283
Appendix 7: ¹ H NMR (300 MHz, CDCl ₃) spectrum of 3,5-dibenzyloxystyrene	
2.43	284
Appendix 8: ¹ H NMR (400 MHz, CDCl ₃) spectrum of 12-acetoxy-3,5-	
dimethox vstilbene 2.46	285
Appendix 9: ¹ H NMR (500 MHz, CDCl ₃) spectrum of 12-acetoxy-3.5-	
dimethox vstilbene 2.47	286
Annendix 9 . ¹ H NMR (500 MHz CDCl ₂) enlargement (6.9-7.6 ppm) spectrum	200
of 12-acetoxy-3 5-dimethoxystillene 2 47	287
Appendix 10: 1 H NMR (300 MHz CDCl ₂) spectrum of 12-metoxy-3.5-	207
dimethovystillene 7 8	288
Annandiy 11: ¹ H NMR (400 MHz CDCL) spectrum of 12 metoxy 3.5 ditert	200
hutydimethyloxysilanostilbono 2 48	280
Annandiv 12: ¹ II NMD (500 MHz CDC1) spectrum of 12 hydroxy 2.5	209
diharayoyustilhara 2 40	200
$\frac{1}{12} \frac{1}{11} \frac$	290
Appendix 15: H NMR (500 MHz, CDCl ₃) spectrum of pterostildene 1.2	291
Appendix 14: H NMR (400 MHz, CDCl ₃) spectrum of 12-metnoxy-3-nydroxy-	202
5- butydimetnyloxysilanestilbene 2.5. (12)	292
Appendix 15: H NMR (400 MHz, deuterated acetone) spectrum of 12-	202
methoxy-3,5-dihydroxystilbene 2.51.	293
Appendix 16: ¹ H NMR (500 MHz, deuterated acteone) spectrum of 12-acetoxy-	
3,5-dihydroxystilbene 2.52.	294
Appendix 17: ¹ H NMR (400 MHz, CDCl ₃) spectrum of 12-acetoxy-3,5-	
dihydroxystilbene 2.53.	295
Appendix 18: ¹ H NMR (500 MHz, CDCl ₃) spectrum of 12-acetoxy-3-	
acethoxystilbene 2.54.	296
Appendix 19: ¹ H NMR (400 MHz, CDCl ₃) spectrum of 12-methoxy-3-acetoxy-	
5-stilbene 2.55	297
Appendix 20: ¹ H NMR (500 MHz, CDCl ₃) spectrum of 12-hydroxy-3-	
methoxystilbene 2.56.	298
-	

Appendix 21	¹ H NMR (400 MHz, CDCl ₃) spectrum of 12-methoxy-3-	
	hydroxystilbene 2.57.	. 299
Appendix 22:	¹ H NMR (500 MHz, deuterated acetone) spectrum of 12-hydroxy-	
	3-hydroxystilbene 2.58 .	. 300
Appendix 23	13 C NMR (125 MHz, CDCl ₃) spectrum of pterostilbene 1.2	. 301
Appendix 24:	: ¹³ C NMR (125 MHz, CDCl ₃) spectrum of 12-hydroxy-3-	
	methoxystilbene 2.56	. 302
Appendix 25:	ESI-TOF-MS (-) spectrum of pterostilbene 1.2	. 303
Appendix 26:	ESI-TOF-MS (-) spectrum of pterostilbene 2.56	. 304
Appendix 27:	: 'H NMR (400 MHz, CDCl ₃) spectrum of (E) -4-(2,6-dichloro-3,5-	2 0 7
	dimethoxystyryl)phenyl acetate 3.48	. 305
Appendix 28	$E = C \text{ NMR} (75 \text{ MHz}, \text{CDCl}_3) \text{ spectrum of } (E)-4-(2,6-\text{dichloro}-3,5-1)$	201
	dimetnoxystyryl)phenyl acetate 3.48	. 306
Appendix 29	(E)-4-(2,6-dichloro-3,5-dimethoxystyryl)phenyl	207
Annondiy 20	acetale 5.40	200
Appendix 30	: ES-10F-MS (+) spectrum of diastaraaisomar 3 41	300
Appendix 31	1 H NMR (400 MHz, CDCl ₃) spectrum of diastereoisomer 3.41	310
Appendix 32	1 H NMR (400 MHz, CDCl ₃) spectrum of diastereoisomer 3.42	311
Appendix 34	1 H NMR (400 MHz, CDCl ₃) spectrum of diastereoisomer 3.45	312
Appendix 34	¹ ¹ H NMR (400 MHz, CDCl ₂) spectrum of diastereoisomers 3.43 a	. 512
-pponum co	& 3.43h	313
Appendix 36	¹ H NMR (400 MHz, CDCl ₃) spectrum of diastereoisomers 3.46a	
TT	& 3.46b	. 314
Appendix 37	: ESI-TOF-MS (+) spectrum of 3.44	. 315
Appendix 38:	: ES-TOF-MS (+) spectrum of 3.41	. 316
Appendix 39:	: ES-TOF-MS (+) spectrum of diastereoisomers 3.43a & 3.43b	. 317
Appendix 40:	: ES-TOF-MS (+) spectrum of diastereoisomers 3.46a & 3.46b	. 318
Appendix 41:	: ¹ H NMR (500 MHz, CDCl ₃) spectrum of δ -viniferin analogue	
	4.14	. 319
Appendix 42:	: ¹³ C NMR (125 MHz, CDCl ₃) spectrum of δ -viniferin analogue	
	4.14	. 320
Appendix 43:	: ESI-TOF-MS (-) spectrum of δ-viniferin analogue 4.14	. 321
Appendix 44	: ¹ H NMR (500 MHz, CDCl ₃) spectrum of δ -viniferin analogue	
	4.184	. 322
Appendix 45	: ¹³ C NMR (125 MHz, CDCl ₃) spectrum of δ -viniferin analogue	
	4.184	. 323
Appendix 46		224
Appendix 47:	: ESI-TOF-MS (-) spectrum of δ -viniferin analogue 4.184	. 324
	: ESI-TOF-MS (-) spectrum of δ-viniferin analogue 4.184 : ¹ H NMR (500 MHz, CDCl ₃) spectrum of tricuspidatol 3.47	. 324 . 325
Appendix 47	: ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 : ¹ H NMR (500 MHz, CDCl ₃) spectrum of tricuspidatol 3.47 : ¹ H NMR (500 MHz, CDCl ₃) enlargement (3.6-7.2 ppm) spectrum	. 324
Appendix 47	: ESI-TOF-MS (-) spectrum of δ-viniferin analogue 4.184 ¹ H NMR (500 MHz, CDCl ₃) spectrum of tricuspidatol 3.47 ¹ H NMR (500 MHz, CDCl ₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47	. 324 . 325 . 326
Appendix 47 Appendix 48	 ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 ¹H NMR (500 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47 ¹³C NMR (125 MHz, CDCl₃) spectrum of tricuspidatol 3.47 	. 324 . 325 . 326 . 326
Appendix 47 Appendix 48 Appendix 49 Appendix 50	 ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 ¹H NMR (500 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47 ¹³C NMR (125 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ESI-TOF-MS (-) spectrum of tricuspidatol 3.47 	. 324 . 325 . 326 . 326 . 327 . 327
Appendix 47 Appendix 48 Appendix 49 Appendix 50	 ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 ¹H NMR (500 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47 ¹³C NMR (125 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ESI-TOF-MS (-) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) spectrum of tetralin 4.183 ¹U NMR (500 MHz, CDCl₃) spectrum of tetralin 4.183 	. 324 . 325 . 326 . 326 . 327 . 328
Appendix 47 Appendix 48 Appendix 49 Appendix 50 Appendix 50	 ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 ¹H NMR (500 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47 ¹³C NMR (125 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ESI-TOF-MS (-) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) spectrum of tetralin 4.183 ¹H NMR (500 MHz, CDCl₃) enlargement spectrum (3.0-4.5 ppm and 6.3, 7.2 ppm) of tetralin 4.183 	. 324 . 325 . 326 . 326 . 327 . 328
Appendix 47 Appendix 48 Appendix 49 Appendix 50 Appendix 50	 ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 ¹H NMR (500 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47 ¹³C NMR (125 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ESI-TOF-MS (-) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) spectrum of tetralin 4.183 ¹H NMR (500 MHz, CDCl₃) enlargement spectrum (3.0-4.5 ppm and 6.3-7.2 ppm) of tetralin 4.183 	. 324 . 325 . 326 . 326 . 327 . 328 . 329 . 329
Appendix 47 Appendix 48 Appendix 49 Appendix 50 Appendix 50 Appendix 51 Appendix 51	 ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 ¹H NMR (500 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47 ¹³C NMR (125 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ESI-TOF-MS (-) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) spectrum of tetralin 4.183 ¹H NMR (500 MHz, CDCl₃) enlargement spectrum (3.0-4.5 ppm and 6.3-7.2 ppm) of tetralin 4.183 ¹³C NMR (125 MHz, CDCl₃) spectrum of tetralin 4.183 	. 324 . 325 . 326 . 326 . 327 . 328 . 329 . 330 . 331
Appendix 47 Appendix 48 Appendix 49 Appendix 50 Appendix 50 Appendix 51 Appendix 51 Appendix 52 Appendix 53	 ESI-TOF-MS (-) spectrum of 8-viniferin analogue 4.184 ¹H NMR (500 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) enlargement (3.6-7.2 ppm) spectrum of tricuspidatol 3.47 ¹³C NMR (125 MHz, CDCl₃) spectrum of tricuspidatol 3.47 ESI-TOF-MS (-) spectrum of tricuspidatol 3.47 ¹H NMR (500 MHz, CDCl₃) spectrum of tetralin 4.183 ¹H NMR (500 MHz, CDCl₃) enlargement spectrum (3.0-4.5 ppm and 6.3-7.2 ppm) of tetralin 4.183 ¹³C NMR (125 MHz, CDCl₃) spectrum of tetralin 4.183 ¹³C NMR (125 MHz, CDCl₃) spectrum of tetralin 4.183 ¹⁴ NMR (500 MHz, CDCl₃) spectrum of tetralin 4.183 	. 324 . 325 . 326 . 326 . 327 . 328 . 329 . 330 . 331 . 332

Appendix 53: ¹ H NMR (400 MHz, CDCl ₃) enlargement (6.0-7.3 ppm) spectrum	
of trimer 4.185	333
Appendix 54: ¹³ C NMR (400 MHz, CDCl ₃) spectrum of trimer 4.185	334
Appendix 55: ESI-TOF-MS (+) spectrum of trimer 4.185	335
Appendix 56: ¹ H NMR (400 MHz, CDCl ₃) spectrum of tricuspidatol A	
analogue 4.180	336
Appendix 57: ¹ H NMR (400 MHz, CDCl ₃) enlargement (3.4-4.6 ppm and 6.0-	
7.2 ppm) spectrum of 4.182a and 4.181a mixture	338
Appendix 58 : ¹ H NMR (500 MHz, deuterated acetone) spectrum of ε-viniferin	
1.4	339
Appendix 59: ¹ H NMR (500 MHz, deuterated acetone) spectrum of resveratrol	
1.0	340
Appendix 60 : ¹ H NMR (500 MHz, deuterated acetone) spectrum of δ-viniferin	
analogue 4.186	341
Appendix 60 : ¹ H NMR (500 MHz, deuterated acetone) spectrum of δ -viniferin	
analogue 4.186	
Appendix 61 : ESI-TOF-MS (+) spectrum of δ -viniferin analogue 4.186	343
-rr	

ABBREVIATIONS

AIBN = 2,2¢-azobisisobutyronitrile BDE = bond dissociation energy CCE = constant current electrolysis CV = cyclic voltammogram *m*CPBA = *meta*-chloroperoxybenzoic acid $DCC = N, N\phi$ dicyclohexylcarbodiimide DFT = density functional theory DMAP = 4-dimethylaminopyridine DMSO = dimethyl sulfoxide Ep = electrode potential 9-I-BBN = 9-iodo-9-borabicyclo[3.3.1]nonane IBX = 2-iodoxybenzoic acid IP = ionization potential mA = milli Ampere TBAF = tetra-n-butylammonium fluoride TFA = trifluoroacetic acid THF = tetrahydrofuran TMS = trimethylsilyl pTsOH = para-toluenesulfonic acid V = volt