Chapter 3: UART with BIST 16

CHAPTER 3

UART with BIST

3.0 Introduction

There are two ways a computer can transfer data. The two ways are parallel data
communication and serial data communication. In parallel data communication. often
cight or more lines of wire conductors are used to transfer data to two devices. For that
reason, lot of data can be transferred in a short time by using many parallel wires.
However parallel communication fails to transfer data in a greater length (more than few
feet away) since long cables diminish and even distort signals. To transfer data in much
greater length, serial data communication is used. Serial data communication made
communication between two systems located at distances of hundreds of feet and

millions of miles possible.

Serial data is transmitted via its serial port. A serial port is one of the most
universal parts of a computer. It is a connector where serial line is attached and
connected to peripheral devices such as mouse, modem, printer and even to another
computer. In contrast to parallel communication, these peripheral devices communicate
using a serial bit stream protocol (where data is sent one bit at a time). The serial port is
usually connected to an integrated circuit called a Universal Asynchronous
Receive/Transmit (UART) which handles the conversion between serial and parallel

data.

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UART with BIST 17

To fulfill the needs of most customers who are expecting the designer to include
testability feature, this chapter will direct the reader to the implementation of Built-In-
Self-Test (BIST) technique to a UART design. Using communication between two PCs
as example, the discussion will begin with answering the question on how does the
UART works. Following the question, the architecture of UART and BIST will be
described. The discussion will continue u./ith the insertion of BIST circuitry that will
allow efficient test coverage to the UART design. At the end of this chapter, the features

of the proposed UART design will be presented.

3.1 Universal Asynchronous Receive/Transmit (UART)

Figure 3.1 shows how the UART receives a byte of parallel data and converts it
to a sequence of voltage to represent Os and Is on a single wire (serial). To transfer data
on a telephone line, the data must be converted from 0s and 1s to audio tones or sounds
(the audio tones are sinusoidal shaped signals). This conversion is performed by a
peripheral device called a modem (modulator/demodulator). The modem takes the signal
on the single wire and converts it to sounds. At the other end, the modem converts the
sound back to voltages, and another UART converts the stream of Os and s back to

bytes of parallel data.

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UART with BIST

Figure 3.1: Serial Data Transmission and Receive

3.2 UART Architecture

Bi-directional Data Bus

Transmitter

Receive Shift Register

| Baud Rate
| BelkX1e Generator | BelkX16 i
Control logic Jq—-— Control logic

Ao

Receiver

Figure 3.2: UART block diagram

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UART with BIST 19

Figure 3.2 shows a UART block diagram, which consists of two independent
modules [Oelsner, 2000] (the transmitter and the receiver). Each module implements its
own function as a transmitter or a receiver. Both the transmitter and receiver modules
can be combined as a top-level design and writes or reads data all through bi-directional
CPU interface. They also shared bi-directional data bus, system clock and reset lines.
However, they have separate inputs and outputs for most of their control lines. They also

have separate unsynchronized clock signals.

In this section, the reader will be provided with the description of the UART’s
transmitter followed by the description of the UART’s receiver. Next, the discussion
will continue with the description of a baud rate generator. The discussion conducted in

this section will provide the reader with the basis on how the UART is designed.

3.2.1 The Transmitter

The transmitter’s module consists of Transmitter Holding Register (THR)
and Transmitter Shift Register (TSR). Both the THR and TSR are controlled by a
control-logic to perform their functions. THR holds the contents of parallel data
(i.e. 5-, 6-, 7-, 8-bits) from data bus and TSR on the other hand shifts out the
contents of the THR. Before any transmission is conducted, a high reset forces
the transmitter into idle mode. The transmitter then waits for a new data to be
written to the THR. A new data is detected when the transmitter is not in the idle

mode. If'a new data is detected, the transmitter will enter load mode. In the load

A VHDL Implementation of BIST Techmique in UART Design

Chapter 3. UART wh BIST 20

mode, the contents of THR are loaded into TSR and at the same time, the
transmitter’s output is asserted with a low start bit. After the contents of the THR
are successfully loaded, the data will enter shift mode. In this mode, data from
TSR is shifted to the transmitter’s output. The shifting is controlled by 16X
clock, which transmits one bit cvery 16-clock pulse. Furthermore, a flag bit in a
status register will be set to true in the shift mode. The computer can read the flag
bit to see if the UART is ready to transmit another byte. The shifted data is then
transmitted as serial data frames at the transmitter’s output. During the
transmission, a parity bit and stop bit will be generated depending on the users

chosen mode. The transmitter sequence is summarized in Figure 3.3.

<
<

Idle mode

Data Write —]

4
Load mode
4
Shift mode

Figure 3.3: Transmitter sequence of UART

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UAR™ with BIST 21

3.2.2 The Receiver

As the transmitter, the receiver also has two registers, Receiver Holding
Register (RHR) and Receiver Shift Register (RSR). RHR is a register (i.c. 5-, 6-,
7-, 8-bits) that holds the contents of data received at the receiver’s input. RSR is
a register used for shifting the d;ita at the receiver’s input. Similar to the
transmitter, these registers are also controlled by a control-logic. However, the
receiver has more complicated architecture. This is due to the responsibility of
catching a data transmitted by another transmitter on an asynchronous bus (which
probably has a clock with different phase and potentially a bit different in
period). Before any data is received, active high-reset forces the receiver to idle
mode. In the idle mode, the receiver waits for the receiver’s input to go low. If
falling edge is detected, the receiver will enter ‘hunt’ mode and searches for a
valid start bit. The valid start bit can be recognized by assuring that the signal
stays low at least half a bit period by using a 16X high-speed clock. If valid start
bit is detected, the receiver will enable the clock used and synchronized it to the
center of the start bit. Then, the serial data will enter shift mode where it will be
shifted from the receiver’s input to the RSR. If an invalid start bit is detected, the
receiver will return to ‘idle’ mode. During reception of a data frame, various
parity and error checks (framing and overrun error) are performed. When the
receiver finished shifting and a complete data frame has been received, the
receiver will return to “idle” mode. At the same time, the contents of RSR will be

loaded into the RHR.

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UART with BIST 22

Reset
\A

Idle mode

Falling edge of Rx —¥]

Hunting
mode

Valid start bit —

]

Shift mode

Figure 3.4: Receiver sequence

3.2.3 Baud Rate Generator

A programmable baud rate generator is capable of dividing t:: timing
reference clock input by divisors of 1 to (2'° - 1), and generates 16 mes the
actual required baud rate. The clock is controlled by the Baud Rz Select
registers (BRSELO and BRSELI); together form a 16-bits integer "N". 3RSEL1
is the most significant byte of the integer ‘N™ and BRSELO is the least s::nificant
byte. The following equation gives the baud rate for any value of N\ th:: can be

programmed into BRSEL1 and BRSELO:

A VHDL Implementation of BIST Technique in UART Design

)
o

Chapter 3: UART with BIST

Baud rate = (N x Frequcix /16 x 2")

Where:

Baud rate = bit/sec.

Fregcix = Frequency of HCLK in Hertz

N = decimal value to program into BRSEL1 & BRSELO

n = accumulator width in bits

Solving for N:

N =(16 x 2" x BaudRate / Frequcix)

=BRSEL1& BRSELO (in hexadecimal)

The size of the accumulator is controlled by a generic “accum_widi=" and
the user can change this as required. Larger width accumulators will rzquire
larger values of N and may mean that some higher speed baud rates can-ot be

generated.

The architecture of the UART has been presented in this chapter consists : { two
independent modules (the transmitter and receiver) and a programmable bai: rate
generator. To improve its test capability a modification has to be made to the T ART
design to incorporate BIST technique. A general BIST architecture is to add = Test
Pattern Generator (TPG), Output Data Compactor (ODC) and Test Controller (TC)

hardware blocks to the design to be tested (the UART). In the following e tion.

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UART with BIST 24

detailed design for test (DI'I) methodology will be =

how to implement BIST technique to a UART design

3.3 BIST Consideration

Inputs » G %
ircurt Rezponse Error Signal
MUX to be Monitor <
Test tested
Generator
Outputs

Test Select

Figure 3.5: Generic BIST

This section introduces the design for test s:2ps and the rules that should be

followed to implement BIST technique to the UART cesign. A general method for using

BIST is illustrated in figure 3.5. The first step to i=iplement BIST is to identify the
possible way to run self-test process by moditving the UART circuitry. The UART
circuitry should consists of Test Pattern Generator (7°G) and Output Data Compactor
(ODC). A modification also has to be made to th: UART design to create a Test
Controller (TC) circuit. The TC will select test modes = invoke an on-chip TPG (which
will apply test patterns to the UART circuit). The res.ting output is compressed by the

ODC then observed by the response monitor. The résponse monitor will produce an

error signal if an incorrect output pattern is detected.

A VHDL Implementation of BIST Technique in UART Desis

Chapter 3: UART with BIST 25

A description of Linear Feedback Shift Register (LFSR) and Multiple Input
Signature Register (MISR) will be carried out in this section. The implementation of
BIST technique to the UART design will use these registers to serve as Test Pattern

Generator (TPG) and Output Data Compactor (ODC).

3.3.1 Linear Feedback Shift kegister (LFSR)

A Linear Feedback Shift Register (LFSR) is a Test Pattern Generator
(TPG) approach that does not depend on the availability o an instruction
process. The LFSR is constructed by performing exclusive-OR on the outputs of
two or more of the flip-flops together and feeding those outputs back into the

input of one of the flip-flops (Figure 3.6).

D Ql D Q |— D Qn

> or - > Q2 | Qo' L
w| T [|

Figure 3.6: n-bits Linear Feedback Shift Register

A VHDL Implementation of BIST Techmque in UART Design

Chapter 3: UART with BIST 26

LI'SR makes extremely good Pseudo Random Pattern Generator (PRPG)
[Petersom, 1972]. PRPG is a test pattern that has no obvious order and has
certain randomness properzies. PRPG is obviously very useful for BIST, since
they can generate all possit e paterns at the input of each sub-circuit with small
logic circuitry. Pscudo-ranc-m pattern of 1s and Os are initialized by feeding a
“seed” value to the circuitry using 'a clock pulse. The “seed” can be anything

except all Os (all 0s “seed” will czuse the LFSR to produce all 0 patterns).

A maximal-length LFSR produces the maximum number of PRPG
patterns possible and has a pattera count equal to 2" — | (where n is the number
of register elements in the LFSR). Because there is no way to predict
mathematically if an LFSR wil be maximal length, Peterson and Weldon
[Petersom, 1972] have compiled tables of maximal-length LFSRs to which
designers may refer. Table 3.1 shows some feedback combination that will

generate all 2"-1 bit patterns “or L=SRs with length in the range n=4 to 32.

Table 3.1: Feecrack Combination to Generate LFSR

N Feedback
<.6.7 Qi® Q,

5 Q® Qs

8 Q® QD QD Qs
12 Qi® Qs ®Qs®Qny
1216 Q:0 Q®Q; ®Q,
24 Q® QO®Q®Qu
32 Q® Q:®Qn®Qxn

AVHDL Implementation of BIST Teclpe.ze. 11 < 2T Desigr

Chapter 3: UART with BIST 27

3.3.2 Multiple Input Signature Register (MISR)

The MISR is nothing more than a LFSR. MISR can be constructed by
modifying a LFSR by adding exclusive-OR gates between the shift register. An
n-bit MISR is shown in Figure 3.7. The test data (Z1, Z2, Z3,..., Zn) is XORed
into the register with each clock. and the results represent a signature that can be
compared with the signature for a known correctly functioning component. This
type of signature analysis will catch many, but not all-possible errors. An n bit
signature registers maps all possible input streams into one of the 2" possible
signatures. One of this is the correct signature. and the other indicates that error

has occurred.

Al z2 z3 Zn

D QI o @ —LE_ D Qn

Figure 3.7: n stage L¥SR Configured as a MISR

A VHDL Implementation of BIST Technique in = ART Jesign

Chapter 5 UART with BIST 28

T'he correct signature can be obtained in two ways:

. The golden chip approach
This approach takes the correct signature by perforning the self-
test operation on chips, which have passed all other forms of

manufacturing and functional test.

. Simulation of the entire self test sequence

This approach will use a simulation tool to simulate the correct

signature.

Due to the availability and reliability of simulation tools, the simulation

of the entire self-test sequence approach will be used in this thesis.

3.4 UART with BILBO Register and Tester

Tre problem of testing sequential network is simplified by observing the state of
all the flip-flops instead of just observing the outputs. For each state of the flip-flops and
for each input combination, the network outputs need to be verified and goes to the
correct next state. One approach would be to connect the output of each flip-flop within
the IC being tested to one of the IC pins. Since the number of pins on the IC is limited,
this appreach is not practical. The solution to the question is by arranging flip-flops to
form a sh:1t register. The state of the flip-flop will be shifted out bit-by-bit using a single

serial-outzut pin on the IC. This is called scan path testing.

A VHDL Imzlementation of BIST Technique in UART Design

Chapic- 3. UART with BIST 29

BILBO is a scan register that can be modified to serve as state register, pattern
generiior, signature register, or shift register. In summary the BILBO operating modes

are presented as follows:

B1B2 Operating Mode
00 Shift register
01 LFSR/PRPG
10 Normal
11 MISR

Figure 3.8: BILBO Operating Modes

LDA LDB :D
Test Test

CE CE
ﬁ;_’ z Ao /| UART UART ﬁé’ Z B o

B2 Tx Rx Bl

DBUS

BI si y so

©
b1

Figure 3.9: UART with BILBO Register and Tester

Figure 3.9 illustrates how to apply BILBO registers to test the UART design. In

this stcture. “Register A” and “Register B™ may be configured by mode control

A VHDL ‘mplementation of BIST Technique in UART Design

Chapter 3: UART with BIST 30

(“bilbomode™) signal to act as either a shift register, a test pattern generator (PRPG),
normal application mode function (normal) or a data compressor (MISR). The test starts
with the initialization of the BILBO by applying a “sced” 10 its serial-in (si) pin. The
initialization can be obtained by configuring BILBO’s operating mode (“bilbo_mode™)
10 “00™ (shift register mode). Following the initialization, the bilbo mode is set to <017
5o that “Register A” is configured as LFSi{ (“bilbo_mode™ = ~017) and Register B as

MISR (“bilbo_mode™ = “11" (Note: XOR force “017 to *117)).

“Register A” (LFSR) produces 8-bits pseudo random pattern data in parallel.
Then, the parallel data is feed to the UART’s transmitter. The UART converts the
pseudo random parallel data to serial data. The serial data is then looped back to its
receiver to create an internal diagnostic capability. The UART’s receiver converts the
serial data back to parallel and will be accepted by “Register B” (MISR). A signature
will be produced after 255 clock iterations (8 data bits produce 2° = 256 PRPG) and
completes the test. The signature is then scanned out from serial output (so) pin by
configuring bilbo_mode to “00”. Following the scan, the signature is then compared
with the correct signature achieved from the simulation of the entire self-test sequence
approach in a tester. If the signature produced by MISR is similar to the correct

signalure_. it can be concluded that the UART is working properly.

The implementation of BIST technique in UART design has been discussed
thoroughly in this section. Both UART and BIST behavior will be described using

VHISC hardware Deseription Language (VHDL) in the coming chapter. Before

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UART with BIST

proceeding to the VHDL implementation, it is appropriate to preempt with some brief

features of the proposed UART.
3.5 UART Features

In this thesis, the UART will be designed using National Semiconductor and
[National, 1995][Martin, 1989] QuickLogic [Oelsner, 2000] standards and freely
distributed modules of Generic UART [Harvey, 1999] with some modification to suite
the implementation of BIST technique. It will capable and compatible of running 16450
software. The UART will be included with a programmable baud rate generator that

capable of dividing the timing reference clock input by divisors of 1 to (2'° - 1), and
generates 16X clock for driving the internal transmitter logic. The 16X high-speed clock

also will be used for sampling data (at the center of a bit) to reliably captures the bit

B e
AR AR AR A AR AR AR

Figure 3.10: Sampling data received with 16 clocks faster than transmitter bit clock

A VHDL Implementation of BIST Technique in UART Design

PERPUSTAKAAN UNIVERSITI MALAYA

Chapter 3: UART with BIST 32

The UART will also equipped with fully programmable serial interface

characteristics. It can:

e transmits or receives 5-, 6-. 7- or 8-bits characters,
e capable to generate and detect even, odd, stick and no parity bit,
e generates 1- or 2- stop bits and

e generates baud rate (DC to 1.5M baud)

Other feature that will be provided by the UART is false start bit detection. The
false start bit detection will prevent any noise received by the receiver to be interpreted
as the data transmitted by the other UART. The UART also will be equipped with line
break generation and detection to stop current data from being transmitted or received by
the UART. The break occurs when the line is held at logic ‘0” for a time of one

character.

The UART has complete modem control functions (i.e. CTS, RTS, DSR, DTR,
RI and DCD), and a processor-interrupt system. Interrupts can be programmed to the
user's requirements, minimizing the computation required to handle the communications

link. The summary of the modem control functions is:

e DTR and DSR to indicate that the DTE (PC) and DCE (modem) are alive and
well

e RTS and CTS control the flow of data

A VHDL Implementation of BIST Technique in UART Design

Chapter 3: UART with BIST 33

e RTS asserts when DTIE wants to send data
e CTS asserts when DCE is ready and has room to accept the data in response

to RTS. If no room, CTS does not activate and the DTE will reassert DTR.

Note:

CTS - Clear To Send - Rl —Ring Indicator

RTS — Request To Send DCD - Data Carrier Detect

DSR - Data Set Ready DTE - Data Terminal Equipment

DTR - Data Terminal Ready DCE - Data Communication Equipment

The CPU can read complete status of the UART at any time during the
functional operation. Status information reports include the type and condition of the
transfer-operations being performed by the UART also the status information of error
conditions (parity, overrun, framing, or break interrupt). The designed UART will have

anominal voltage supply of 5.0V and low gates count (about 3000 gates).

An internal diagnostic capability features loop-back-control for communication
link-fault-isolation. The loop-back will loop back the transmitted data to the receiver to
test the functionality of the UART. The internal diagnostic capability also features Built-

in-Self-Test (BIST) technique, which allows the UART circuit to test itself.

This chapter has described both the proposed UART and BIST technique that

can be implemented together to improve the UART test capability. Following this

A VHDL Implementation of BIST Technique in UART Design

Chapter 3- UART with BIST 34

discussion, the extensive use of CAD tools and language-based design to describe the
structure and behavior of digital electronic hardware designs will be presented in the
next chapter. The suitability of VHDL to design BIST will be investigated. In addition,
UART with BIST pins and registers descriptions will be presented throughout the rest of

the chapter.

A VHDL Implementation of BIST Technique in UART Design

