AN ELECTROCHEMICAL STUDY OF HEAVY METALS EFFLUENT TREATMENT

A DISSERTATION SUBMITTED TO THE FACULTY OF SCIENCE UNIVERSITY OF MALAYA IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

PERPUSTAKAAN UNIVERSITI MALAYA

BY

EU KOK SOON

1996

KUALA LUMPUR, MALAYSIA
ACKNOWLEDGMENT

I gratefully acknowledge my sincere thanks to Associate Professor Dr. Chan Chee Yan for his constant supervision and invaluable guidance throughout the study. I also like to thank my co-supervisor, Associate Professor Dr. Tioh Ngee Heng for his help and guidance.

I would like to express my gratitude to the companies that provided the test materials and effluents samples.

Finally, I wish to express my thanks to members of the technical staff of the Chemistry Department and my friends who had given me assistance in one way or another.
ABSTRAK

Satu tinjauan majalah dan literatur paten mengenai cara rawatan air buangan dari elektrosaduran, terutamanya teknik yang terlibat dengan cara elektro-pengumpalan atau pemendakan bersama bagi logam hidroksida yang tak larut telah dijalankan. Satu cara elektrolisis untuk penyingkiran ion kuprum, kromium dan nikel, dengan pemendakan bersama oleh pembawa ferik hidroksida dan aluminium hidroksida yang dijanakan secara elektrokimia, telah diuji pada suhu ambien dengan menggunakan elektrod keluli dan aluminium dalam simulasi larutan buangan yang mengandungi 500, 100, 50 mg/L kuprum, kromium, nikel pada pelbagai ketumpatan arus pada julat merangkumi 2 ke 20 mA/cm². Kehadiran NaCl dalam julat 0.01 mol/L hingga 0.1 mol/L boleh memperbaiki kesan penyingkiran logam berat. Ferum oksida hidrus magnetik yang mana ia boleh mendak dengan pantas dan mudah dipisahkan dari larutan dengan menggunakan magnet telah dibentuk semasa elektrolisis dilanjutkan dan dengan pengacauan magnetik. Ion kromium menggalakkan pembentukan oksida hidrus magnetik ini. Penyelidikan keupayaan dinamik tentang kelakuan elektrod ketika elektrolisis telah dijalankan bagi kedua-dua jenis logam elektrod yang digunakan.
Abstract

A survey of journal and patent literature on methods of treatment of electroplating waste solutions, in particular those involving electrocoagulation or co-precipitation of insoluble metal hydroxides, was carried out. An electrolytic method for removal of copper, chromium and nickel ions, by co-precipitating with electrochemically generated carrier ferric hydroxide and aluminium hydroxide, was tested at ambient temperature with the use of steel and aluminium electrodes in simulated waste solutions containing 500, 100 and 50 mg/L copper, chromium and nickel at various current densities ranging from 2 to 20 mA/cm². The presence of NaCl in the range of 0.01 mol/L to 0.10 mol/L could improve the heavy metal removal efficiency. Magnetic iron hydrous oxide, which could settle faster and was easier to separate from the solution by using magnets, was formed during prolonged electrolysis with magnetic stirring. Chromium ion enhanced the formation of this magnetic hydrous oxide. Potentiodynamic studies on electrode behaviour during electrolysis in the simulated effluent solutions have also been carried out for both types of electrode materials used.
TABLE OF CONTENTS

Acknowledgements i
Abstract ii

1. INTRODUCTION 1

1.1. The Emergence of Environmental Problems 1

1.2. The Wastes Treatment Technologies 3

1.3. Wastes Problem in Malaysia 5

1.4. Effluent From Metal Finishing Industries 7

1.5. The Treatment Technologies Of Inorganic Heavy Metal Wastes 10

1.6. Ion Exchange Method 13

1.7. Membrane Procesion Methods 15

1.8. Electrochemical Methods 16

1.8.1. Electrolytic Processes 16

1.8.2. Electrodialysis processes 17

1.8.3. Electroflotation processes 18

1.9. The Precipitation Treatment Methods 19

1.10. The Precipitation Mechanism 23

1.11. Co-precipitation 28

1.12. The Other Treatment Technologies 32

1.13. The Objective Of The Project 34

1.14. Potentiodynamic Studies 37
2. EXPERIMENTAL

2.1. Chemicals & materials 39

2.2. Apparatus & Equipment 41

2.3. Solution Preparation 43

2.4. Electrochemical treatment of simulated effluent 46

2.4.1. Electrolysis process 46

2.4.2. pH measurement 48

2.5. Atomic Absorption Spectrophotometry (AAS) for heavy metal determination 49

2.5.1. Introduction 49

2.5.2. Analysis method 52

2.6. Chemical co-precipitation treatment method 52

2.7. Potentiodynamic measurements 53

2.7.1. Polarization process 53

2.8. Heavy metal analysis 55

2.9. Estimation of metal hydroxide particle size 56

3. RESULTS AND DISCUSSION 57

3.1. Electrolysis 57

3.1.1 Qualitative observations 57

3.1.2. Effect of aeration 61

3.1.3. Voltage changes 64

3.2. Quantitative data 65

3.2.1. Solution containing 500 ppm of copper 65

3.2.2. Solutions containing 100 ppm of copper 69
3.2.3. Effluent containing 50 ppm of copper
3.2.4. Treatment reproducibility
3.2.5. Effect of sodium chloride
3.2.6. Effect of current Density
3.2.7. pH changes, (cause and effect)
3.3. 3.3.1. Treatment of solutions containing chromium, Cr (VI) ions
3.3.2. Effluent containing 500 ppm of chromium (VI)
3.3.3. Solutions containing 100 or 50 ppm of chromium (VI)
3.3.4. pH changes (Cr solutions):
3.4. 3.4.1. Solutions containing nickel (II) ions
3.4.2. Solutions containing 100 or 50 ppm nickel (II)
3.4.3. pH changes in the Ni solutions during electrolysis.
3.5. 3.5.1. Artificial effluent containing a mixture of 100ppm ±5% copper (II), 100ppm ±5% chromium (VI) and 100ppm ±5% nickel (II)
3.5.2. Solutions pH changes during electrolysis.
3.6. 3.6.1. Real effluent from a chrome-plating facility in a local electroplating factory
3.7. Chemical Co-precipitation Method
3.8. Results of Potentiodynamic Study of Stainless Steel 304 and Aluminium 91100 Electrodes Behaviour
3.8.1. Copper solution
3.8.2. Nickel solutions
3.8.3. Chromium solutions

3.8.4. Electrode behaviour in pure and mixed solutions of the heavy metals.

4. CONCLUSION

5. REFERENCES

6. APPENDICES