Chapter 2: Literature Review

2.1 Introduction

In order to start to do the dissertation, a deep study regarding the data ion of

Microsoft Excel Application has been carried out. As a whole, this chapter will be

divided into two major parts, which are the usage of Microsoft Excel and the

devi of Java program to Excel.

Furthermore, aspects such as Microsoft Excel file format, Java language and its usage in

calling Components Object Model (COM) provided by Mi ft will also be explained

and elaborated in this chapter.

2.2 The usage of Microsoft Excel Application

Microsoft Excel dominates the spreadsheet market. Not too long ago, Lotus 1-2-3 was

considered the “standard” spreadsheet. However, Excel now holds that distinction, with

an approximate 90% market share (Mij ft Excel — The Spreadsheet Page, 2003).

Microsoft Excel started to be used in the year of 1987. It was originally developed for

Macintosh. The first Excel version was labelled “2” to correspond to the Mac version. It

dch,

was one of the first sp to use a graphical interface with pull down menus and a

point of click capability using a mouse-pointing device. Due to the advent of computing

technologies, Microsoft Excel is now being expanded and equipped with multi-sheet

workbooks functionality.

Today, the latest version of Excel which is known as Excel 2003, has a long list of new
features. The most significant feature is the ability to recover the work when Excel

crashes.

2.2.1 The Usage Area

The main contribution of Microsoft Excel is in handling statistical jobs. For its facilities

PPN

in tabulations, pivots tables and graphical p ion, many statisticians have chosen to

use Excel rather than using any other statistical software. Excel has also proven its

functionality in providing dynamic nature and power of data manipulation.

Besides that, different types of business organisations have also been using Microsoft

Excel as a tool for their ional busi analysis. For ple, accounting firms use

Excel to record their account dsheet in el ic form. The spreadsheet shows all

P

of the costs, income, taxes, etc on a workbook for a manager to look at when making

decisions.

Excel can be used to organize information into columns and rows. The data can then be
added up by a formula to give a total or sum. Furthermore, it summarizes information
from many paper sources in one place and presents the information in a format to help a

decision maker see the financial “big picture” for the company.

23 Alook into Excel file format

Microsoft Excel uses a file format called Binary File Format (BIFF). There are many
types of BIFF records. Each has a 4 byte header. The first two bytes make up an opcode
that specifies the record type. The next two bytes specify record length. Header values
are stored in byte-reversed form (less significant byte first). The rest of the record is the

data itself. Figure 2.1 illustrates the file format of the header.

Record Header Record Body
Byte number 0 1 2 3 0 1
Record Contents XX | XX | XX | XX [XX |XX]...

Opcode | Length Data

Figure 2.1 Excel File Format

2.4 Java Technology

In order to develop an object-oriented data automation system, the Java technology,
which is both a programming language and a platform, has been studied. The code that

is written in Java and run directly on the Java platform is a standalone program. This

dal can be d in any machine that has installed with Java Virtual

Machine (JVM).

2.4.1 The Java Programming Language

The Java programming language is a high-level I that can be ch ized as
object-oriented, distributed, interpreted, portable, robust and multithreaded.
The Java p ing | is designed to be object oriented from the ground up.

Programmers using the language can access existing libraries of tested objects that
provide functionality ranging from basic data types through I/O and network interface to
graphical user interface toolkits. These libraries can be extended to provide new

behaviour.

With most p ing | the program must be either compiled or interpreted

q

ona hine. The Java p ing | is unusual in

so that it can be
the sense that a program is both compiled and interpreted. First, the Java program will be

ated

into an intermedi 1 called Java bytecodes — the platform-

ind dent codes interpreted by the interp on the Java platform. The interpreter

parses and runs each Java bytecode instruction on the computer. Compilation happens
just once; interpretation occurs each time the program is executed. The following figure

illustrates how this works.

MyProgram 0110101011... m

Figure 2.2 Execution of a Java program

The java bytecodes help make “write once, run anywhere” possible. A java program can
be compiled into bytecodes on any platform that has a Java compiler. The bytecodes can
then be run on any implementation of the Java Virtual Machine (JVM). This means that
as long as a computer has a Java VM, the same program written in the Java

programming language can run on Windows 2000, a Solaris workstation, or on an iMac.

2.4.2 The Java Platform

As the Java technology ists of ing | and a platform, a description

P -4

regarding the Java platform will be presented here.

A platform is the hardware or software environment in which a program runs. Windows
XP, Linux, Solaris and MacOS are some of the most popular platforms. Normally, most
of the platforms can be described as a combination of the operating system and
hardware. The Java platform differs from most other platforms in that it’s a software-

only platform that runs on top of other hardware-based platforms.

The Java platform has two components, namely the Java Virtual Machine (Java VM)

and the Java Application Programming Interface (Java API). Java VM is the based for

the Java platform and is ported onto various hardware-based platforms. It is responsible

for interpreting all the java classes that have been compiled.

The Java APl is a large collection of ready-made components that provide many useful

capabilities, such as graphical user interface (GUI) wizards. The Java API is grouped

into libraries of related classes and interfaces; these libraries are known as packages.

Among the area of facilities provided by Java API are stated as below:

vi.

The essentials: Objects, strings, threads, numbers, input and output, data
structures, system properties, date and time, and so on.

Applets: the set of conventions used by applets

Networking: URLs, Transmission Control Protocol (TCP), User Datagram
Protocol (UDP) sockets and Internet Protocol (IP) addresses.

Internationalization: the Java API provides a mean for writing programs that can
be localized for users worldwide. With this, programs can automatically adapt to

specific locales and be displayed in the appropriate language.

Security: encryptions, digital si es, session ion and private as

“well as public key management provide different levels of security in a Java

program.
Software components: the JavaBeans is a type of component that can be plug

into existing system architectures.

vii. Java Database Connectivity (JDBC): provides uniform access to a wide range of

relational databases such as IMB DB2, Oracle, Microsoft SQL and Informix.

2.4.3 Applying Java Technology in Building Object-oriented Data Automation

System

The Java technology, both the programming language as well as the platform provide a

better way of doing p ing. Firstly, it p writing less code. A Java class
can be reused and deployed in any project that is similar in its functional aspects.
Secondly, the Java technology encourages good coding practices. It provides garbage
collection that help in avoiding memory leaks. Besides that, its extensible API allows

programmers to reuse other people’s tested code and introduce fewer bugs.

“Write once, run anywhere” is another factor that leads the author to use Java
technology. Any Java program can be run consistently on any platform because it is

piled into machine-ind dent bytecodes. Furthermore, the ultimate output of the

P

Java program, can be distributed and accessed easily in any machine without

recompiling the entire Java program.

2.5 Concept of Interfacing

In order to interface with any objects that are constructed from different programming
languages, a common standard has to be set for describing the objects. Nowadays, there
are two standards that are widely used for describing objects. The standards are Java

Native Interface (JNI) developed by Sun Microsystems and CORBA Interface

Definition L (IDL) developed by Object M: Group (OMG).

Platform independence is the key factor that leads to the development of a common
standard for describing objects. An object developed in C++ should be able to be used in
other programming environment such as Java without modifying the entire C++ object
source code. This feature will contribute to the flexibility of programming. Besides that
it has also promotes object reusability and speeds up the system development process.
Further information regarding Object Interfacing could be obtained from Command

CORBAW® Side by Side: Archi S ies & Impl ion (Jason, 1999) and

Java Native Interface (Rob, 1998).

2.5.1 Java Native Interface (JNI)

JNI is the link between a Java application and native code. It allows a java programmer
to invoke native methods from an application or applet, pass arguments to these
methods, and use the results retumed by the methods. This native concept includes any

methods that would have been declared in other progr i g

To explain the JNI in more details, a simple example that invokes a native method coded
in C++ is shown. Figure 2.3 shows a simple Java code that loads a DLL called nevnative

and invokes a method called display().

public class NevNative {

public native void display();
static {
System.loadLibrary("nevnative");

public static void main(String[] args) {
NevNative object=new NevNative();
object.display();

}

}

Figure 2.3 NevNative.java

The system.loadLibrary function is responsible for loading the DLL library and it has to
be placed in the static block. This is to ensure that once the instance of this NevNative
object is created, the DLL will be automatically loaded in the Java program. After
writing the NevNative.java code, it should be compiled by using a Java command, as

shown in Figure 2.4.

C:\dk\bin\j java

Figure 2.4 Conipih NevNative.java

After a successful compilation of the Java file, a C header file must be created. A java

command called javah is used to do so.

C:\dk\bin\j ingdir

Figure 2.5 Create a C Header File

Then, check the working directory and a file called NevNative.h should be found. Open

the file and there is a line stated as in Figure 2.6.

JNIEXPORT void JNICALL Java_NevNative_display(JNIEnv *, jobject);

Figure 2.6 The NevNative.h File

The line shown in Figure 2.6 is the method declaration for the display method which

will have to be implemented in the C file.

For the actual C file, a method called display has to be written in order for the
NevNative.java program to invoke it. A file called NevNativeImp.c is created and it is

shown in Figure 2.7.

#include <jni.h>
#include "NevNative.h"
#include <stdio.h>

JNIEXPORT void JNICALL Java_NevNative_display(JNIEnv *env, jobject
obj)

{
printf("Hello world!\n");
retum;

}

Figure 2.7 The NevNativeImp.c File

The NevNativelmp.c is a simple C code. For method declaration, it should be exactly
same as the line stated in the NevNative.h (Figure 2.6). The display() method is meant
for printing a line of simple message. Two header files which are the NevNative.h and
the jni.h must be included to avoid compilation error. The next step would be compile

the C file into a DLL file called nevnative.dll.

In order to verify the implementation of JNI, the NevNative class should be executed by

using a java command as shown in Figure 2.8.

C:\dk\bin\java workingdir\NevNative

Figure 2.8 Executing NevNative Class

If the message “HelloWorld” is displayed on the screen, then it proves that the JNI

ion has ded. JNI has been used for enabling two different

programming languages to talk to each other.

252 CORBAIDL

The Common Object Request Broker Architecture (CORBA) is a standards-based
distributed computing model for object-oriented applications developed by the Object

Management Group (OMG), a group of 700 vendors and user members including HP,

Novell, Sun, IBM, and Digital.

20

CORBA is an architecture which uses an Object Request Broker (ORB) to send requests
from objects executing on one system to objects executing on another system. The ORB
allows objects to interact in a heterogeneous, distributed environment, independent of
the computer platforms on which the various objects reside and the languages used to

p them. For ple, a C++ object running on one machine can communicate

with an object on another machine which is implemented in Common Lisp.

A CORBA-compliant application comprises a client and a server. The client is
responsible for invoking operations on objects which are managed by the server, and the
server receives invocations on the objects it manages and replies to these requests. A
Common Lisp object, can either use CORBA services available over the network (as a
client), or it can publish services to other components in the application (as a server).

The Object Request Broker (ORB) the icati between client and

server using the Internet Inter-ORB Protocol (IIOP), which is a protocol layer above

TCP/IP.

A distributed CORBA application provides a communication medium to any objects
regardless of the language in which they are implemented. This can be achieved with the
ORB through an interface written in the CORBA Interface Definition Language (IDL).
The IDL is included in CORBA version 2.0 specification. It is designed to describe the
interface of objects, including the operations that may be performed on the objects and
the parameters of those operations. The behaviour of an object is thus captured in the
interface independently of the object’s implementation. Clients need to know an object’s

interface in order to make a request. Servers will respond to requests made on those

21

interfaces, and clients do not need to know the actual details of the server’s

implementation.

To implement an interface, CORBA IDL is compiled into the source code language with

which the client or server is implemented. On the client side, this code is called a stub.

On the server-side, this IDL code is called a skeleton.

In order to request a service from the server, the client application calls the methods in

the stub (moving down the protocol stack from the client to the stub and then to the

ORB). Requests are then handled by the ORB, and enter the server via the skeleton

(moving up the protocol stack: i.e. an upcall). The server object then serves the request

and returns the result to the client. Figure 2.9 shows the communication between a client

and a server by implementing CORBA.

Methods called on
the remote object

Client

stub liop

skeleton

Server

[Mctual object
implementing

the service

Other ORB Services (eg. name ’

Figure 2.9 Client-Server Communication using CORBA

22

2.6 Calling COM objects provided by Microsoft using Java Technology

Component Object Model (COM) defines a language-independent binary standard for

component interoperability. Microsoft has defined COM interfaces that provide common

functionality.

Therefore, in order to access and communicate with the entire Excel objects provided in

the Excel object library file (namely excel8.olb), it is necessary to first study what is

COM.

2.6.1 Overview of Component Object Model (COM)

The Object Linking Embedding (OLE) was developed before the development of COM.

COM is now widely deployed b each COM p can p ially impl

several standard or custom interfaces to expose its functionality. These interfaces are the

binary standards through which clients and p objects

Basically, every COM interface and class has its own globally unique identifier (GUID).
The GUID is a 128-bit identification number that uniquely represents the COM interface

or class across platforms, computers and applications.

COM interfaces can be defined with the Interface Definition Language (IDL). These
definitions can be converted into binary form by the Microsoft Interface Definition

Language (MIDL) compiler.

23

The life cycle of a COM object starts with an invocation to a COM object where an
object is returned in an [Unknown pointer form. An interface layer called QueryInterface
is used to request the interface that is needed. Then, the Querylnterface relases the
[Unknown pointer. This pointer is used to execute methods/functions. Finally, the

pointer is released as soon as it is no longer needed.

2.6.2 Purpose of Calling COM Objects

What is the purpose of calling a COM object? The COM object is a Microsoft specific
protocol for inter-process communication. In order to access and automate all the
functions/methods provided in Excel application, it is important to be able to
communicate with COM objects. However, COM only works on Windows platform.
Microsoft does provide a way of communicating with COM objects by using a COM

Wrapper.

The COM Wrapper is responsible to create Java classes that act as the interface between
a Java program and the COM objects needed. The main concem in this project is the
Excel COM objects. Nevertheless, this COM Wrapper can only be used firmly under

Microsoft Java Virtual Machine (Microsoft JVM).

In order to achieve the objective of ing a platform-independent data
system, it is necessary to use a Java-COM bridge that links between the Java technology

and COM.

24

2.6.3 The JACOB Project — A Java-COM Bridge

With the extensive use of Microsoft Excel as a business tool, many Java based e-

business applications and back-end systems need to share information 4nd interact with

Microsoft Excel application. At present, there are a few Java based projects that has

been carried out in order to develop bridges that link between Java programs and the

Microsoft Excel COM objects. Table 2.1 describes five providers that are currently

available in the development of Java-COM Bridge.

Table 2.1 The Java-COM Bridge Providers

COM objects. Java2COM, which was designed to

No. | Java-COM | Description Open-
Bridge Source
Provider

1 Intrinsyc's J- | J-Integra is a bi-directional pure Java-COM bridge. No
Integra Suite | Finance, IT, phar ical and defense panies are

using J-Integra in an enormous number of diverse ways,
such as accessing MS Excel from Java, accessing
Enterprise JavaBeans from Visual Basic, and accessing
COM objects from JavaServer Pages.

2 IBM's Interface Tool for Java is a tool that allows Java No
Bridge2Java | programs to communicate with ActiveX objects. It

allows easy integration of ActiveX objects into a Java
Environment. Using the Java Native Interface and COM
technology, Interface Tool for Java allows an ActiveX
object to be treated just like a Java object.

3 | infoZoom's | jacoZoom is a collection of java-packages, which allows | No
jacoZoom the users to automate COM/Automation-Servers using

java. It is based on JNI and thus can be used with any
java environment on the MS Windows platform. It
contains a commandline-utility, which produces java
wrapper cl directly corresponding to the COM-
objects and interfaces.

4 | Neva Object | Java2COM is a bi-directional Java-COM bridging tool No
Technology’ | that enables Java applications to use COM objects and
s Java2COM | makes possible to expose Java objects as if they were

25

provide lightweight wrappers for COM protocols,
attempts to preserve various semantics of COM. The
main benefit of such an approach is two-folded: on one
hand, it simplifies porting of existing Visual Basic or
C++ code to Java and gives COM-savvy developers a
head-start. On the other hand, it makes it easier to keep
up with changes in COM technology while COM

evolves.
5 | Jacob JAVA-COM Bridge that can be used to call COM Yes
Project’s Automation components from Java. It uses JNI to make
JACOB native calls into the COM and Win32 libraries. It’s an

open source project and it provides freedom for
application developers to modify and enhance the Java
objects to suite different kinds of requi

A comparative study has been carried out in order to choose which of the available Java-
COM Bridge providers for developing this project. There are a lot of similarities among
these Java-COM Bridge providers. Basically, all the Java-COM Bridge providers
provide java classes for developers to use and hence shorten system development life

cycle.

Here, the JACOB project is selected as the tool for calling COM automation for
Microsoft Excel application. The main reason for using the JACOB is that it provides
sufficient resources, guidelines and at the same time it allows system developers to
modify the source-code. Hence, the existing classes can be reprogrammed and refined
for better system performance. The remaining Java-COM Bridge providers do not
expose their source codes. This has resulted limitation in modifying and enhancing

classes.

26

JACOB is a Java-COM bridge that allows Java programmer to call COM Automation
components from Java. It uses Java Naming Interface (JNI) to make native calls into the
COM and Win32 libraries. The JACOB project started in the year of 1999 and is being

actively used by thousands of developers worldwide (The Jacob Project, 2002).

Due to the availability of the JACOB’s source codes, many system developers has

already benefited from it b any p can make modifications to the code
and submitted them back for the enhancement of the project. Most importantly, it
provides a means of interaction with essential Excel objects and collections, such as
Application, Workbook, Worksheet and Range. The latest version of JACOB project is

version 1.7.

The JACOB version 1.7 works with any Java Virtual Machine, including Microsoft Java
VM, and Sun Java VM. The JACOB binary distribution includes a Java JAR file and a
dynamic link library (DLL) file. Below is the instruction on how to leverage the usage of

JACOB in calling COM objects for Microsoft Excel application:

i jacob.jar: a JAR file for the java classes which must be added to the JAVA
CLASSPATH. By using this jar file, all COM objects (which belong to
Microsoft Excel application) will have to be renamed to com.ms.jacob.com.*.
For example com.ms.com.Variant (used in Microsoft Excel application) should

be replaced to com.ms.jacob.com.Variant.

27

i jacob.dll: a small Win32DLL which must be added to the operating system path.
In the Microsoft Windows platform, the operating system path is located at

C:\Windows\system.

JAVA runtime Environment: Any JVM

Your Java Objects

Pure Java proxies .
generated by JACOB 1.7 Jacob.jar

OS system path I Jacob.dll

[Excel COM objects running under windows. I

Figure 2.10 Using JACOB to call COM objects

2.6.3.1 Usage and Documentation

The JACOB project provides com.jacob classes that are intended to be compatible with
the Microsoft com.ms classes. Therefore, it is important to have the documentation of
Microsoft’s System Development Kit (SDK) for Java. The documentation of Microsoft’s
SDK for java provides a good reference and descriptions which explains the

methods/properties of each of the Excel COM objects.

28

2.7 Similar Projects — Microsoft Office Automation using C++, J++ and Visual

Basic

No doubt, a successful project should be inspired by successful and informative projects,
which were developed previously. Hence, three similar projects that were carried out
before are used as references for developing this project. The projects are listed as
below:

* An ion prog; on Mi ft Word files that is developed by Poonam

Baijaj (Word Automation C++ Class, 2002).

= A Visual Basic program created by Richard R. Taylor (Microsoft Knowledge
Base Article — 219151, 1999) that demonstrates how to create and manipulate
Microsoft Excel files.

* Excel ion using Mi ft J++ (Mi ft Knowledge Base Article —

169796, 2000).

2.7.1 Microsoft Word Automation using C++

This Mi ft Word i was developed under an environment that

prog

consists of Visual C++ 6.0 and Windows 2000 with MS-Office installed. It describes the
implementation of a C++ class that automates Microsoft Word application. The class
uses low-level COM and is quite handy in its usage. The C++ class is called CautoWord.
It is used to open a word document file and print its contents on the default printer. The
class hides all the implementations of low-level COM and provides an easy way for the

system developer to invoke the print function provided in the CautoWord class.

29

The CautoWord class provides the following methods:
= CautoWord() : Constructor function that initializes COM
* int InitAutomation(): initializes the automation. In case of failure, it returns —1
else 0 is returned.
= int PrintDcument(): this function will load the file and print the contents on the

default printer. Negative returned value (-1) indicates that an error occurred.

More methods can be added in the CautoWord class for system enhancing purpose.
Appendix A contains a usage scenario for Microsoft Word automation program by using

the CautoWord class.

2.7.2 Microsoft Excel Automation using Visual Basic

The automation program written in Visual Basic uses Microsoft Excel object library in

order to manipulate Microsoft Excel files. A Visual Basic project (standard EXE type)

must be created for writing this automation program. In the Visual Basic project

envi a refe call to Mi ft Excel object library must be established.
Appendix B shows the steps involved and the source-code for the Microsoft Excel

automation program.

2.7.3 Microsoft Excel Automation using Microsoft J++

Basically, the program which is published by Mi ft Corp. shows how to call a COM

object (Excel object) from Java. A reference call to Microsoft Excel object library is

30

made in order to make an Excel application visible and open an existing Excel file.
Appendix C shows the steps involved and the source-code for Microsoft Excel

automation using Microsoft J++.

However, in January 2001, Microsoft Corp. has announced discontinuity support for MS
Java Virtual Machine (MSJVM). This change is the result of a settlement agreement
reached in January 2001 that resolved a legal dispute with Sun Microsystems (MSJVM

Transition FAQ, November 2003). After September 30 2004, Mi ft Corp. will no

longer be authorized to support MSJVM.

Therefore, more efforts and research need to be carried out in order to write an Object-

Oriented program that can automate Microsoft Excel documents.

2.8 Summary

This section describes all the aspects that have been studied in order to complete the
development of the Object-Oriented Data Automation System for Microsoft Excel Files.
With the extensive usage of Microsoft Excel application in business world today, it is
crucial to develop a tool that is platform-independent for the ease of data sharing among

a group of users.

Microsoft has developed a group of COM objects that gives application developers from

worldwide to be able to access its Office applications such as Excel, Words, and Access.

31

Achhanlo11]

However, these COM objects can only be accessed by using Microsoft COM Wrappers

that run under the environment of Microsoft Java Virtual Machine (MSJVM).

Nowadays, a good prog ing concept “write once, run anywhere” has been widely

promoted. Therefore, the Java technology, which provides a dard Java Virtual

Machine (JVM), can be used to call the underlying COM objects.

32

