Chapter 3: Sy Develop Methodology

3.1 Introduction

In this chapter, the Object-Oriented Methodology will be explored deeply in order to
develop an Object-Oriented Data Automation System for Microsoft Excel Files.
Here, the Unified Approach (UA) has been chosen as the methodology of system

development.

Furthermore, the Unified Modelling Language (UML) will be used as the modelling
tools. An explanation regarding system development phases, which are the Object-
Oriented Analysis and the Object-Oriented Design phase will also be included in this

section.

3.2  Object-Oriented Methodology

Object-Oriented (O-O) methodology is a different approach of system develop

compared to the traditional approach which is based on functions and procedures
calls. O-O is based on the development of self-contained modules or objects that can
be easily replaced, modified and reused. It encourages a view of the world as a

system of cooperative and collaborating objects (Steve, C. and John, D. 1994).

kk}



3.2.1 Justification of Choosing O-O Technique

This project will be developed using O-O programming technique. Several

justifications have been made to choose to use the O-O programming technique.

Below are the justifications of choosing O-O technique.

iii.

Reusability of classes

Object-Oriented programming technique provides functionality such as
extends or implements that enable the reusability of existing classes.
Furthermore, in this project there will be a lot of objects that need to be
extended or implemented in order to establish the connection with Microsoft

COM objects. Therefore, O-O technique is chosen to develop this project.

Interfacing with Microsoft COM objects

System developer could use the Interface class provided in any O-O
programming language (e.g Java) to invoke the underlying objects that are
developed in other programming languages such as C++. The OODA System
for Microsoft Excel Files needs to communicate with all the C++ classes

constructed and stored in a Dynamic Link Library (DLL) file format.

Supports enterprise application

All the classes developed using O-O technique can be extended and
implemented to support application at enterprise level. The OODA System
for Microsoft Excel Files can be used as an office application for

administration work. The system can be installed and used at any

24



workstation. It can also be installed in a central server where other clients
(workstation) can access the program. All classes could be migrated and

placed at any machine without facing any difficulties.

Promotes integrity

This project needs to extend, use or implement many core classes which are
already developed and have proven their stability and reliability. With all the
ready-made classes, the system integrity is guaranteed. Sun Microsystems
Inc. has provided the Java Development Kit (JDK) that comprises many core
classes which are very useful. Furthermore, it could shorten the system

development period.

Higher level of security

Object-Oriented language such as Java needs to be compiled before it is
deployed and invoked by other classes. The binary format of the class file has
managed to hide the original source code. It doesn’t easily expose the source

code and it could be safely distributed or installed in any machine.

3.2.2 The Ad of Object-Ori

The advantages of Object-Oriented system development methodology, defined by

Steve.C and John.D (1994) are stated as below:

15



33

Higher level of abstraction

Any object that is developed using object-oriented approach should support
the abstraction or encapsulation of its’ attributes and methods. Changes made
within an object are not exposed and hence it will not affect the development
of other classes.

As long as the syntax of methods invocation is stated clearly, the process of
designing, coding, testing and maintaining a program would be much simpler
and manageable.

Seamless transition among different phases of software development

Compare to the traditional software develop ipproach, the methods and
attributes are all defined and grouped together in one program. Moving from
one phase to another phase is a complicated task because each method and
attribute has to be modelled, developed and tested under different
perspectives. This is because there is no standardization in defining the
methods and attributes required for developing the system. However, the
object-oriented approach uses a set of modelling language (UML) from the
analysis phase until the coding and testing phases. This will then create a

clearer and more robust envi of system d P

Object-Oriented Techniques

Knowing that the implication of using an object-oriented approach in system

development will contribute to an easier way of analysis, design, coding, testing and

maintenance, hence it is a need to study which of the O-O techniques that can be

applied in developing this project. Nowadays, there are a few O-O techniques that

26



are widely used by system developers. These techniques no doubt have their own
uniqueness and special functionality in guiding system developers to build up an
object-oriented system. However, it has some weaknesses as well. A brief
explanation of the technique chosen for developing this project is included in Section

3.4.

3.4  Unified Approach (UA)

Unified Approach is an approach that combines the best practices of methodologies

1 "

developed by Booch, R and Jacobson (Ali Bal i, 1999). UA is not a new
methodology. It consists of the combination of the processes, guidelines and with the
utilization of the Unified Modelling Language (UML) notations and diagrams. It is

proven to reach a better understanding of the object-oriented concepts and system

development.

Eventually, each method developed by Jacobson, Booch and Rumbaugh has its
strengths and weaknesses as well. The Object Modelling Technique (OMT)
developed by Rumbaugh is well suited for describing the object model or the static
structure of the system. OMT provides one of the strongest tool sets for the analysis
and design of an O-O system. However, this model cannot fully express the system

requirements.
Next, the methodology introduced by Booch helps the system developers to design

system using the object paradigm. It only covers the analysis and design phases of an

0-O system. It has been criticized for utilizing a large set of symbols.

17



Finally, Jacobson et al. methodologies, which include Object-Oriented Business
Engineering (OOBE), Object-Oriented Software Engineering (OOSE) and Objectory,
cover the entire life cycle and stress traceability between different phases in O-O
system development. It can model the traceability of system component for both
forward and backward. However these methodologies do not treat object-oriented

design to the same level as Booch’s methodology.

With the combination of the best practices introduced by Rumbaugh, Jacobson and

Booch, a more well-designed O-O system can be produced.
3.4.1 Phases in Unified Approach

The process and components of UA are:
i 0-O analysis

ii. 0-0 design

iii. Layered approach

iv. Continuous testing

V. UML modelling

Vvi. Repository for object-oriented system development patterns and frameworks.

Figure 3.1 shows the phases in Unified Approach.

2R



Develop UseCases, Identify classes, Refine
% activity diagrams i relationships, and
- diagrams. attributes & iterate
methods
{ |
0-0 Analysis
Layered
Approach
Repository
of use-cases, analysis, design,
U, and past exper
Documentation & Traceability UML Based
Modelling
0-0 Design
Design classes, .
. Design view, User satisfaction &
'"'::‘,h Apply Design Axioms. m-hy:nlnd usability tests based
" ‘prototypes on use cases
structure ...
Build UML class
diagrams
T Continuous testing

Figure 3.1 Phases in Unified Approach

3.42 Object-Oriented Analysis

Object-oriented analysis is a process that is responsible for extracting the user needs
toward an Object-oriented system. It is a core process that must be carried out in
order to produce system which can satisfy user needs. In the analysis phase, the
domain problem is being identified. It is important to clearly understand the domain

problem before any system development is being carried out.

In order to develop this project, the user requirements and their problems when

manipulating the Microsoft Excel files must be clearly identified first. A further

description of this analysis phase is included in Chapter 4.

20



The outcome of the object-oriented analysis phase will be a list of models that
describe what the system will do. However, these models will not explain how the
system will function. Besides that, the analysis is being conducted from the user’s
perspective and not the technology perspective. The Use-case diagram shown in

Chapter 4 will explain the system flow from user’s perspective.

Basically, there are five steps to perform in the Object-oriented analysis phase:

i The actors of the system (user) is identified

ii. Create a simple business process model, which is the UML Activity diagram
iii. Develop use-case

iv. Develop the interaction diagram

V. Identify classes of object.

3.4.3 Object-Oriented Design

The object-oriented design phase introduced in UML has combined Jacobson’s
analysis and interaction diagram, Booch’s object diagram and Rumbaugh et. al’s
domain models. Therefore, with the best practices extracted from three of them, all
the processes involved in system development are traceable. Basically, an object-
oriented system development process must be traceable across requirements,

analysis, design, coding and testing phases.

In this phase, the design of the classes, attributes, methods, association structure and

protocols will be produced. Basically, there will be three layers of objects that need

40



to be developed. These layers of objects are the Access layer, View layer and

Business layer.

As soon as the design of objects is completed, user satisfaction and usability tests can
be carried out in order to verify and validate the system. Testing must be done by
referring to the use-case diagram, which is prepared during the analysis phase.
Iterative testing can refine the quality of the design. Thus, the outcome of the system

development process will be able to fulfil users’ needs.

3.4.4 Iterative Develop and Conti Testing

The process of an Object-oriented system development is described as an iterative
process where the system is tested until the users are satisfied with it. The purpose of
this continuous testing is to identify as many weaknesses in the system as possible.
With this process of identifying, the end-users will find the system beneficial to their

work and hence improve their quality and quantity of work.

A proper testing plan has to be developed in order to carry out the process of iterative
and continuous testing. From day one of the development of this project, the coding
that was built is tested again and again until it works properly. Whenever there is any
error or bug, the coding have to be modified and incrementally developed until it can

be transformed into the actual system application.

A1



3.4.5 Unified Approach Proposed Repository

The UA has proposed a repository that should be able to store any objects from
previous projects that might be useful in future system development. All definitions
of the data elements belong to an object have to be accessible and searchable. Hence,

a faster and shorter time of development process can be reached.

All the Components Object Model (COM) developed by Microsoft Corp. are made
available and can be referred easily. The reason behind this is that these COM were
built using C++ language, which is an Object-oriented language as well. With a good
object repository, any system enhancement can be carried out and developed without

any conflicts.

3.4.6 Layered Approach

In UA, it has introduced an approach which sep the functions of interface from
the functions of business and the functions of data access. There are three layers that
must be clearly identified and segregated. These layers are the Access Layer,

Business Layer and View Layer.

The Access Layer contains all classes that are responsible for request and retrieve
data from the databases or any file-based repositories. This layer doesn’t interact
with any object that is displaying data or receiving data from the end-users. In this
project, the access layer will contain objects that execute Microsoft Excel file

opening, reading, writing as well as saving data into it.

49



Secondly, objects in Business Layer are responsible for handling all the business
logic, business flow and the guidelines of executing the system. Business layer will
invoke functions or procedures provided by the Access Layer in order to retrieve or
insert the business data. This layer also interacts with the View Layer and pass

relevant information to it.

Finally, the View Layer is responsible for interacting with the end-users. The objects
which belong to this group will accept requests from users and invoke the respective
Business Layer objects in order to response to the users. The View Layer will not

have a direct communication with the underlying Access Layer.

The purpose of having these three distinguished layers of object is to create a more

i,

focused and indep objects develop envi It is good to create

objects that represent tangible elements of the business yet are completely

independent of how they are represented to the user (through an interface) or how

they are physically stored (in a database or file).

3.5  Unified Modelling Language

The methods employed and applied in the Unified Approach explained earlier
include the use of Unified Modelling Language (UML) for modelling. UML is a
modelling language for specifying, visualizing, constructing, and documenting the
artefacts of a system-intensive process. It is emerged from the unification that
occurred in the 1990s following the “method wars” of the 1970s and 1980s. It was

originated from three of the most prominent methodologists in the information

A1



systems and technology industry, namely Grady Booch, James Rumbaugh, and Ivar

Jacobson (the three Amigos).

3.5.1 Definition of UML

UML is a modelling language. It is used to specify, visualize, construct, and
document the artefacts of a system-intensive process. Within a system-intensive
process, UML is used to describe methods that are applied as a process to derive or
evolve a system. Diagram 3.1 shows a brief explanation of the usage of UML

(Fowler, M., Kendall, S., 1997).

Unified Modeling Language
System-intensive Process

Figure 3.2 Unified Modelling Language

As a language, UML is used for communication. That is, a means to capture

knowledge (semantics) about a subject and express knowledge (syntax) regarding the

AA



subject for the purpose of communication. The subject is the system under

discussion.

Apart from that, UML acts as a modelling language. It focuses on understanding a
subject via the formulation of a model of the subject (and its related context). The
model embodies knowledge regarding the subject, and the appropriate application of

this knowledge constitutes intelligence.

Regarding unification, UML unifies the information systems and technology
industry’s best engineering practices across types of systems (software and non-

software), domains (business versus software), and life-cycle process.

UML is also applied for specifying systems. It can be used to communicate “what” is
required for a system, and “how” a system may be realized. This can be done by the

creation of different types of UML diagrams which will be explained later.

When applied to visualizing systems, UML can be used to visually depict a system
before it is realized. This feature will help to cut down the implementation cost as the
system is visually presented to the users first for clarifying specifications and

avoiding misunderstanding.

Furthermore, UML helps in constructing systems where it can be used to guide the
realization of a system similar to a “blueprint”. UML applies in documenting systems
as well. It is can be used for capturing knowledge about a system throughout the

system development life cycle.

ac



3.5.2 Justification of applying UML

The reason of applying UML in this project is mainly because of the characteristics
represented by UML itself. As explained in the previous section, UML is a modelling

language.

Building a model for software prior to its construction is an essential process. It is as
important as having a blueprint for building a large building. A good model can act
as a medium of communication from analysis phase to development phase in a

system development life cycle.

The process of data‘ automation for Microsoft Excel files comprises a lot of static and
non-static classes. The static classes of object would be the COM objects which are
developed and provided by Microsoft Cooperation. The non-static classes would be
the Java classes specially designed for segregating an Excel file as well as combining

different portions of data into one Excel file.

Due to the complexity that will occurred, visualization and modelling of the classes
of object will provide a clear picture on how to design the program. Besides that,
modelling can help to identify the weaknesses as well as the strengths of the design
of the whole system architecture. All and all, the use of visual notation to represent
or model a problem can provide several benefits relating to clarity, familiarity,

maintenance and simplification.

46



To achieve clarity, it is always easier to use graphical representations or visual
representation than from listings of codes or tables of numbers. A graphical
representation helps in identifying errors and omissions. Besides that, it will also

help the users to understand the system which is being represented.

Familiarity occurs when there are similarities in using form of model, which the
information is actually represented. As all of the system developers are using the
same standards for modelling, it will automatically create an environment of

universal understanding.

Visual notation can improve maintainability of a system. The visual identification of
locations to be changed and the visual confirmation of those changes will reduce
errors. Therefore, it is easier and faster as well as fewer errors will occur in the

process of making those changes.

Simplification of system designs can be achieved by using a higher level of
representation that is clearly defined. In the context, UML is a kind of higher level of

representation that helps to construct a general form of visual notation.

3.5.3 UML Diagrams

A small set of nearly independent views of a model is best to be used to represent a
complex system. Each model may be expressed at different levels of fidelity. UML
has defined nine graphical diagrams for modelling complex system:

i Class diagram (static)

47



il Use-case diagram

il Behavior diagram (dynamic)

a. Interaction diagram — seq diagram, collaboration diagram

b. Statechart diagram

c. Activity diagram
iv. Implementation diagram
a. Component diagram

b. Deployment diagram

In this project, these UML diagrams will be used to model the architecture of classes

of objects, which are going to be used to manipulate the Microsoft Excel files.

The first diagram, which is the Class diagram (also referred as object modelling), is
the main static analysis diagram. It shows the static structure of the model. A class
diagram represents a collection of static modelling elements. Besides that, it also

shows the relationships among those elements.

Secondly, the use-case diagram which is introduced by Ivar Jacobson in the Object-
Oriented Software Engineering (OOSE) method, represents a specific flow of events
in the system. A use-case corresponds to a sequence of transactions. Each transaction
will involve actors (outside of the system) and the internal objects. The interactions
between them can be used to model the real implementation of the system. Before
the system is actually developed, it is important to show this diagram to the end-users

of the system so that they can verify and validate each system flow.

48



Events happen dynamically in all systems. In an object-oriented system, objects are
created and destroyed, objects send messages to one another in an orderly fashion,
and in some cases, external events trigger operations on certain objects. The different
states of an object can be modelled using dynamic diagrams. Table 3.1 shown below

will explain different usage for each type of diagrams under this category.

Table 3.1 Dynamic Diagrams

Dynamic Diagrams

No | Type Sub type Descriptions
1. | Interaction | Sequence Shows an interaction arranged in a time sequence.
diagram diagram It is modelled within a lifeline which represents

the object’s existence during the interaction.

2. | Interaction | Collaboration | Represents collaboration, which is a set of objects

diagram diagram related in a particular context. It shows the
g h d among the set of objects.
3. | Statechart -- Shows the sequence of states that an object goes
diagram through during its life in response to outside
stimuli and g
4. | Activity - Represents the variation or special case of a state
diagram machine. It triggers the performance of operations
and the transitions of processes that describe the
entire busi process.

Lastly, the UML diagrams also consists of a type of diagram called impl ion

diagram. This type of diagram shows the implementation phase of system
development. In detail, it describes the structure of the source code and the run-time
implementation structure. There are two types of implementation diagrams:
i Component diagram
It models the physical components in the design of a system. The physical
components are such as the source code, user interface and the program
execution.

ii. Deployment diagram

49




This diagram is used together with the component diagram to show how

physical modules of codes are distributed on various hardware platforms.

Figures 3.3 through 3.10 shown below are the graphical representation of each type

of diagram provided in UML.

Person

id : Integer

name : String
f-address : String

|+Person()

l+setiD(in id : String)
[+setName(in name : String)
[+setAddress(in address : String)|

[+getiD() : Integer
[+getName() : String
[+getAddress() : String

Figure 3.3 Class Diagram

Contact Address
Storing System

Figure 3.4 Use-Case Diagram

50



Contact Address Storing
[oom ] [

enter id, name, address ]

perfom updates

update address success/fail

search address

retum address i

Figure 3.5 Sequence Diagram

Contact Address
Storing System Person
Object

) 1: enter id, 2: save info
5: return result y name, address

<

<
Contact Address

Message

Storing System

Figure 3.6 Collaboration Diagram

([ Idle )

No input to the contact
address storing system State

Figure 3.7 Statechart Diagram

51



Figure 3.8 Activity Diagram

Access ﬁ; Update

Ul

Figure 3.9 Component Diagram

52



Node I: AdminServer

Access [~ Update

Node 2: John's PC ‘/

T

Figure 3.10 Deployment Diagram

53



3.6 Summary

This chapter has explained the object-oriented methodology that is going to be used
to develop this project. The Unified Approach has been chosen in this project for its

strength in combining the best practices, processes, and guidelines along with UML

notations and di for better understanding of object-oriented concepts and
object-oriented system development. Furthermore, it utilizes the methods and

h

technologies such as, layered app and p pository for storing any

objects that are useful for future system development.

Next chapter will cover the Object-Oriented Analysis (OOA) phase which is the

most important phase for an O-O system development.

54



