Chapter 4: Object-oriented Analysis

4.1 Introduction

In this chapter, the main focus is all the processes carried out as well as the output
produced during the system analysis stage. As discussed in previous chapter, the
Unified Approach (UA) chosen to develop this project requires five steps that need to
be performed in an O-O analysis phase. These five steps are namely first, identify the
actors. Second, produce a business process model, followed by a use-case model,
then identify the system interaction with the actors and last, produce the classes of

objects.

4.2 Current Practice

First of all, it is important to be able to clearly understand what are the normal
practices being used by the users when they need to perform “cut & paste” onto the
data contained in an Excel file. Why is this important? With the understanding of the
users’ normal practices, it is easier and clearer to enable the developer to identify the

problems they are facing.

No doubt, Microsoft Excel application does provide a way for its users to copy (ctrl-
¢), or cut (ctrl-x) and paste (ctrl-v) any portion of data contained in an Excel file.
However, the users have to open several Excel application windows (for each Excel
file) if they need to cut/copy data from several Excel files. The situation becomes

more troublesome if the amount of data extraction becomes huge. Hence, it might

55



slow down the computer’s performance due to the limitation of the Random Access

Memory (RAM).

This project suggests a way to automate the process of data extraction and data

combination from several Excel files.

4.3  Identify Actors

The process of identifying actors is the first activity to carry out before any
construction of objects. It is as important as identifying classes, structures, object
association relations, object attributes and its behaviour (Fowler, M., Kendall, S.,

1997).

Users of the system developed in this project would be those who need to deal with
Microsoft Excel files. These users may come from different kinds of business fields
such as accounting, financing, building tendering, and auditing. They conduct their

business activities by using many Microsoft Excel files.

Regardless of the different positions hold by the users, the term that is used to
represent them is Excel File Administrator. The Excel File Administrator is the only
type of actor that is going to interact with the Object-oriented Data Automation

System for Microsoft Excel Files.

Basically, there are two roles played by the Excel File Administrator defined in this

project. These two main roles are described in the following table.

56



Table 4.1 Two main roles of the actor - Excel File Administrator

Role Description

Data extraction Extract (copy) portions of data from an Excel file and
save the data in a new Excel file.

The main purpose is to separate the data into different
files for distribution to different groups of readers.

Data combination Combine data from several Excel files and save it in one
Excel file.

The main purpose is to reduce the number of files which
represent the same item.

This will allow the readers to open one Excel file instead
of several files to view the data.

4.4  Business Process Model using UML Activity Diagram

In this project, the business process model identified in O-O analysis stage is only a
basic model. This basic model doesn’t explain the details of every single process,

procedure or step involved in the completion of a business process.

The main advantage of developing a business process model is to understand the

system and the user requirements. It also aids in developing use cases that will be

shown in section 4.5.

57




4.4.1 Current System Representation

The business process which represents current system implementation has to be
modelled (at early stage) in order to identify the weaknesses of current system

practice and possible enh to Excel file ipulation. Figure 4.1

presents an activity diagram for Excel file segregation that is practiced in current

system. Figure 4.2 shows the activity diagram for Excel files combination.

58



Openan  Perform data
Excel file extraction ?

open a new blank exce file

Save or close the file

Perform data
extraction again?

Figure 4.1 Activity diagram for Excel file segregation under current system

practice

59



Open an
Excel file A

‘ Combine data

from other file?

Modify file content

File open status

Select the specific
portion of data

Correct
portion? .

Select the position
to paste

Continue to
copy data?

Figure 4.2 Activity diagram for Excel files combination under current system

practice

60



4.4.2 Proposed System Representation

From the activity diagrams shown in Figures 4.1 and 4.2, it is clear that there is a
need in automating both processes which are the segregation of an Excel file and the
combination of data from several Excel files. This project suggests a form of
automation that doesn’t need a user to manually “cut & paste” portions of data in

order to produce the desired output.

For the case of segregation, a user will only have to provide the source file (an Excel
file), the destination file directory to store the segregated Excel files and most
importantly the exact phrases contained in the source file. These phrases are needed
in order to identify the portions of data that have to be duplicated in a new Excel file.

Figure 4.3 and 4.4 presented below describe the activity diagrams for this process.

Open an

Excel file Perform data More phrases

extraction ? Identify pairs of to enter?

View / modify file

Close file?

File open status

Figure 4.3 Activity Diagram for Excel file segregation — stage 1

61



Enter proposed
system

Enter the directory
to store each
segregated Excel
file

Enter the Excel file
name

Enter the exact
phrases to indicate
the starting point
and ending point of
segregation

Continue
enter new
phrase?

Submit all the
information

Display result page

Figure 4.4 Activity diagram for Excel file segregation — stage 2

In the event of combining several Excel files into one file, this project suggests an
automation process where a user doesn’t have to open each file to manually “cut &
paste” the data in order to achieve desired result. There are two elements that are
essential as the input of the automation system. These elements are the Excel file
names and the choice of the user to combine the data either in horizontal or vertical

format. All data will be combined and saved as one filename.

62



With the OODA system, users can easily combine data from several Excel files
without wasting too much time opening, copying and pasting data. Figure 4.5

describes the activities involved in combining data for Excel files.

Combine several
files

Identify which files
to combine into 1
Excel file

Enter all the Excel
lenames.

Continue to enter
more

Figure 4.5 Activity diagram for combining data

63



4.5

Use-Case Model

In the process of implementing the O-O analysis stage, it is important to understand

the system requirements by describing different types of scenarios. Use-Case

diagram suggested by UML is responsible for representing interaction between users

and a system. Use-Case is used for identifying responsibilities of a system to its users

as well. Relationships between classes of objects involved in different subsystems

are discovered during the process of generating Use-Case diagrams.

Table 4.2 below shows several use-cases and their descriptions identified in the

OODA System for Microsoft Excel Files.

Table 4.2 Use-Case Names and their Descriptions

Actor:

Excel File Ad

No.

Use-Case Name

Description

1.

Segregate data in
an Excel file

The Excel file administrator interacts with OODA system
for Microsoft Excel Files to automate the process of
segregating data in one file and save it in several Excel
files.

2. | View segregated | The Excel file administrator can view each segregated
Excel files Excel files and determine correct content.

3. | Combine data | The Excel file administrator automates the process of
from a few Excel | combining data from several Excel files and save it in one
files into one [ file.

Excel file

4. | View combined | The Excel file administrator views the combined Excel file.
Excel file

5. | Invalid phrases | If the phrases entered by the Excel file administrator are

invalid (can’t be located in the Excel file), an appropriate
message is displayed to the administrator. This use case
extends the Excel data automation process.

6. |[Invalid  Excel | If the source file provided by the Excel file administrator is
file format in invalid format (the extension of the file is not “.xIs”), an

appropriate message is displayed to the administrator. This
use case extends the Excel data automation process.

7. | Excel The Excel file administrator enters his choice of services to
automation perform data automation of Microsoft Excel files.
process




Figure 4.6 illustrates the use-cases occurred in the OODA system for Microsoft

Excel files.

OODA System for Microsoft Excel Files

Invalid phrases

Segregate data in
one Excel file

Combine data in a few

Excel File Administrator| Excel fles nto one Excel

Invalid Excel File
Format

View combined
Excel file

Figure 4.6 Use-Case Model

4.6  Interaction between System and Users

In the previous section, a use-case model that explains interactions between actors
and the system has been developed. However, the use-cases identified earlier did not
provide enough information for designing classes of objects. Therefore, it is

important to carry out the process of creating sequence or collaboration diagrams as a

65



systematic way to think about how a use case (scenario) can take place. By doing so,
identification of the objects involved in the OODA System for Microsoft Excel Files

could be done easily.

Developing sequence or collaboration diagrams requires system developers to think
about objects that generate the events occurred in different scenarios and therefore

helps in identifying classes.

Sequence diagrams shown below have been developed to illustrate different types of
scenarios for use cases listed in Table 4.2. Not all of the use cases are elaborated in

sequence diagrams. Figures 4.7 through 4.10 illustrate the sequence diagrams for this

system.
e e
Provide an Excel file
Request ination directory
Enter destination directory
Request phrases
Enter phrases
Verify file format

Invalid file format

Request reenter of Excel file

Figure 4.7 Sequence Diagram — Invalid Excel File Format

66



e I e i e e

Provide an Excel file
Request destination directory
Enter destination directory
Request phrases
Enter phrases.
Verify file format
Valid file format
Verify destination directory
Valid destination directory
Locate phrases
Find phrases
Phrases not exist in Excel file|
Invalid phrases
Request reenter of phrases

Figure 4.8 Sequence Diagram — Invalid Phrases

67




e e e

Provide
Request destination directory
Enter destination directory
Request phrases
Enter phrases.
Veriy file format
Valid file format
Verify directory
Valid directory
Locate phrases
Find phrases
Phrases exist in Excel fle
Request for temporaray file name
L
Retum temporaray file name
Request o file segregation
Segregated Excel data

Save file & retum list of ilenames
e & fotum Ret of fenary
Displaylist of segregated Excel fles
ey T8 of segrmgen] Do T

Figure 4.9 Sequence Diagram — Segregate Data in one Excel file

68




e e e e

Provide several Excel files

Request for combination type
Enter selection of combination

Verify file format

Valid file format
Provide Excel files

Open all files

Send file contents

Combine data successfully

Display success message

Figure 4.10 Sequence Diagram — Combine data in a few Excel files into one
Excel file

The sequence diagrams provide an easier way of identifying the interactions among
objects that would be needed in this project. Here, the collaboration diagrams
suggested in UML ware not developed since it serves similar purposes with sequence
diagrams. Section 4.7 below will describe more on the classes of object

identification.

4.7  Classes of Object Identification

From the sequence diagrams developed in section 4.6, the scenarios that describe the
interaction between the system actor (Excel file administrator) and the OODA
system for Microsoft Excel files are now clear. The Unified Approach (UA) suggests

a way of designing a system by first considering a problem-driven approach to

69



object-oriented analysis and not the relationships between objects, as in a data-driven

approach. (Ali Bahrami, 1999)

The objects needed in this project have been identified during the stage of producing

the sequence models. It is easier to think about the attributes and the methods which

belong to an object class by looking at the sequence models. The sequence models

will explain which events will occur in a particular time and which entity is involved.

Table 4.3 shows the low level of executable use cases that have been identified

earlier.
Table 4.3 Executable Use-cases
Use Case Description Possible Types of Objects
Involved
Segregate data in Actor performs data User interface object,

one Excel file

segregation on one Excel file.
Each segregated portion is
stored as a different Excel

£1
f

System object, Java to
COM object, Temporary
File Object.

Combine data in a
few Excel files

Actor performs data
combination from a few Excel

User interface object,
System object, Java to

files. Combination of data can | COM object.

be done horizontally or

vertically.
Excel automation The automation process which | Java to COM object
process interacts directly with the

Excel COM objects provided

by Mi a
Invalid Excel file The Excel files entered by the | Validation object
format actor are not end with XLS

extension.
Invalid phrases Phrases entered by the actor Java to COM object

could not be found in the
entire Excel file.

70




From the identification of low level ( le) use cases pr d in Table 4.3, the
focus of classification of objects would be the four types of objects. These types of

object are further explored and their contents are presented in Table 4.4.

Table 4.4 Types of Object and their specific classes/packages of object

Types of object Specific classes of object / Package of object
User interface object = svtSegregate

svtCombine

svtProcSegregate

svtProcCombine

ExcelSeparatorService
ExcelSeparator
ExcelCombinerService
ExcelCombiner

System object

it.bigatti.excel8 package
com.Jacob.com package

Java to COM object

Can be included in
ExcelSeperatorService and

ExcelCombinerService objects
* Do not need to build a

Validation object

d object

4.7.1 Identification of Relationships among Classes

As the types of objects have been identified, it is clear to move on to the design of
the classes and the relationships among them. Basically, there are three categories of
object relationships. These categories are the associationv relationship, super-sub
relationship (generalization hierarchy) and a-part-of relationship (also known as

aggregation).

Figure 4.11 to Figure 4.15 presented below show the relationships that have been

identified for this project.

71




[eviSenarateExcall

eCompineExcal

Pass

Pass

p values

svtProcCombine

values

b ]

Figure 4.11 The association relationship — between Interface objects and their
processing objects

}mm&mm] [WM@

Figure 4.12 The iation relationship —
core objects

b

Java servlet objects and Java

imports
— —
[ | impors
it.bigatti.excel8.* com.jacob.com.* [
%%%f% %z imports
imports
Figure 4.13 The iati ! hip — b Java core objects,

it.bigatti.excel8 pnckxge and com jacob.com package

Provides
temporary file

names

Figure 4.14 The iation relationshi TempFileCreator object,
ExcelSeparator object and FileDuplication object

72



[suProcCombine] [svtARerCombine]
L =t ]

Figure 4.15 The iati I: hip — b svtProcCombine Java
Servlet object and svtAfterComblne Java Servlet object

All figures (Figure 4.11, 4.12, 4.13, and 4.15) shown above have produced a clearer
view of the classes of objects. The static class diagrams suggested in UML are

presented in the following section.

4.7.2 Static Class Diagrams

For each class of object identified earlier, there must be a static class diagram to
document it and store it in an object repository. The purpose of implementing this is
to keep a reference of the objects for future enhancements and to be reused in future

development. All the static class diagrams are shown in Figures 4.16 through 4.26.

ExcelCombiner

IFlcid @ int = 0

l-app : object(idI)

FmyApp : object(idl)

-sheet : object(idl)

-mySheet : object(idl)

-book : object(idl)

l-myBook : object(idl)

l-range : object(idl)

-type : String

[-error : String

-noParam : any(idl)

-alpha : String[ ]

-file1 : String

-file2 : String
+ExcelCombiner()
+ExcelCombiner(in file1 : String, in file2 : String)|
[+setCombineType(in tt : String)
|-openExcel() : Boolean
|-getFile2(in path : String) : object(idl)
[+run() : Boolean

[+run2() : Boolean

[+close()

l+doCombine() : Boolean
[+getErrorMsg() : String
[+setErrorMsg(in err : String)

Figure 4.16 Static Class Diagram — ExcelCombiner class

73



ExcelSeparator

Hcid :int=0
-app : object(idl)
l-sheet : object(idl)
l-book : object(idl)
l-range : object(idl)
-maxColumn : int = 10
-noParam : any(idl)
-alpha : String[ ]
-excelSource : String
I-startPoint : String
-endPoint : String
+ExcelSeparator()
I+ExcelSeparator(in excelSource : String, in startPoint : String, in endPoint : String)
-openExcel() : Boolean
-modifyFile() : Boolean
+close()
+run() : Boolean

) : Boolean

Figure 4.17 Static Class Diagram — ExcelSeparator class

ExcelCombinerService
listOfFiles : String[ ]
[-errorMsg : String
|-combineType : String
|+ExcelCombinerService()
+ExcelCombinerService(in list : String[ ], in type : String)|
[+combine() : Boolean
[+getErrorMsg() : String
l+verifyFileFormat(in sourceFile : String) : Boolean

Figure 4.18 Static Class Diagram — ExcelCombinerService class

ExcelSeparatorService

|-headers : String[ ]
[-tempFileName : String[ ]
-count : int =
|-destinationPath : String
|-error : String

+ExcelSeparatorService()

[+ExcelSeparatorService(in sourceFile : String, in headers : String[ ], in count : int, in destinationPath : String)|
-setTempFileName()

[+separate() : Boolean

[+getTempFileName() : String( ]

[+getError() : String

Figure 4.19 Static Class Diagram — ExcelSeparatorService class

FileDuplication
[-sourceFile : String
-dupFile : String
-destinationPath : String
[-error : String
[+FileDupli ile : String, in * String))

ogetDuphcauFN() String
+doDuplication() : Boolean

lgfile() : Byte{ ]
[+getError() : String
Figure 4.20 Static Class Diagram — FileDuplication class

74



TempFileCreator

|-dirPath : String

-objFile : File

+TempFileCreator()

[+createTempFolder(in extension : String) : String|
+getObjFile() : <unspecified>

+setObjFile(in objFile:File)

|+deleteTempFile() : Boolean
[+getTempContent() : String

Figure 4.21 Static Class Diagram — TempFileCreator class

svtSeparateExcel

quest, in tResponse)
 in

Figure 4.22 Static Class Diagram — svtSeparateExcel class

svtCombineExcel

[+doGet(in tRequest, in
, in

(in Http:

Figure 4.23 Static Class Diagram — svtCombineExcel class

svtProcSeparate
t(in qt ,in b 'SP
(in Hittp: quest, in

Figure 4.24 Static Class Diagram — svtProcSeparate class

svtProcCombine

(in t quest, in Http! 'SP
(in H quest, in

Figure 4.25 Static Class Diagram — svtProcCombine class

svtAfterCombine

[+doGet(in HttpServietRequest, in HitpServietResponse)

(in ¢ equest, in Hitp:

Figure 4.26 Static Class Diagram — svtAfterCombine class

75



4.8  Summary

As a conclusion, this chapter has covered the Object-Oriented Analysis process
which is suggested by UML. The process has to be iterated and refined when
necessary in order to produce the desired outcome of the OODA System for
Microsoft Excel Files. The following chapter explains the details in conducting the

Object-Oriented Design process.

76



