Chapter 5: Object-Oriented Design

5.1 Introduction

During the design phase, the main task is to elevate the models into actual objects that
can perform required task. The models referred here are the object-oriented analysis
models which were explained in the previous chapter. Besides that, there is a shift in
emphasis from the application domain to implementation. Classes identified earlier

during the analysis stage provide a framework for the design phase.

Furthermore, the topics which will be covered in this chapter are the processes in O-O
design phase, namely designing classes, designing the access layer, and designing the

user interface.

5.2 Design Axioms and Corollaries

The Unified Approach of developing an Object-Oriented system has proposed two types
of design axioms and six corollaries in designing classes of object (Texel and Williams,
1997). In order to develop a well-designed Object-Oriented Data Automation System for
Microsoft Excel Files, it is important to take note and follow these axioms and

corollaries.

The axioms and corollaries should be clearly defined before proceeding to the design of

classes. By definition, an axiom is a fundamental truth that always observed to be valid

77

and for which there is no counter example or exception. The design axioms suggested in

Unified Approach are defined by Suh (Suh, 1990). Table 5.1 below explains two types

of axioms that should be applied during O-O design phase.

Table 5.1 O-O design axioms

Axiom Description Design Rules
Axiom | | Deals with relationships between system | The independence axiom.
components (such as classes, req Maintain the independ of
software components) components
Axiom 2 | Deals with the complexity of design The information axiom.
Minimize the information

content of the design

From the two design axioms, many corollaries can be derived as a direct consequence of

the axioms. These corollaries may be more useful in deciding a more specific design of

classes. Corollaries can be applied to actual situations more easily than the original

axioms. Corollaries are known as the design rules as well. Table 5.2 below explains six

corollaries, which are derived from the two axioms presented in Table 5.1.

78

Table 52 0-O design corollaries

Corollary Name Description
Corollary 1 Uncoupled Design with Less | All classes have to be designed with
Information Content strong objects (or software
p) cohesiveness.

Corollary 2 | Single Purpose Each class must have a specific
purpose. Do not combine different
methods/behaviours - of different
objects into one class.

Corollary 3 Large Number of Simple | It is good to have a large numbers of

Classes simpler classes.

Corollary 4 Strong Mapping There must be a strong mapping links
classes identified during O-O analysis
phase and classes designed during
design phase.

Corollary 5 | Standardization All classes designed in this phase have
to be documented properly so that it
can be reused in future enh

Corollary 6 | Design with inheritance Superclass is built to store common

behaviour (methods). There must be a
logical sense between the superclass-

el
Str

Basically, the six corollaries presented in Table 5.2 above are originated from the two

design axioms that were presented in Table 5.1. Figure 5.1 shows the origins of the

corollaries.

79

Corollary 1

Corollary 3

Corollary 5

Corollary 6

Figure 5.1 The origins of the corollaries

As a conclusion, the axioms and corollaries suggested by Suh have been used and
practiced in order to produce all the object classes which will be explained in the

following sections.

53 Designing Classes (attributes, methods, associations, structures, protocols)

At this stage, the process of designing classes is carried out by adding more new classes,

attributes or methods. The main contribution of adding new classes, attributes or

methods is to enhance the quality of the system implementation as well as the user

interfaces.

80

In order to achieve the objective, it is important to apply the design axioms and
corollaries in designing classes, their attributes, methods, associations, structure and
protocols. Static UML class diagrams were developed and presented in Chapter 4 while
executing the Object-Oriented analysis activities. Hence, the activities involved in this

stage would be to refine and complete the static UML class diagrams.

There are three steps in this stage of refining the design of classes:

53.1 Refining Attributes

During the analysis stage, 13 objects have been identified. These objects have to be
refined and some of them belong to the access and view layer classes. The static UML
class diagrams presented in section 4.7 have included the information regarding

attributes, which describes the behaviour of the classes.

Here, four classes will be redefined as the data type for each attribute in them are not
clearly defined yet. The four classes are the ExcelSeparator class, the ExcelCombiner
class, the ExcelSeparatorService class and the ExcelCombinerService class. Eventually,
the rest of the classes which have been defined during the O-O analysis stage will be re-

evaluated in the remaining sections of this chapter.

The representation of the attributes for each class will be composed by three types of
symbols. A “+” sign represents the public visibility of the attributes, where they are

accessible to all classes. A “#” sign represents the protected visibility of the attributes,

81

where they are ible to subcl: and the op ions of the class. The third type of

visibility is the private visibility, which is represented by a minus (-) sign. The private

visibility allows the accessibility only to the operations of the class.

5.3.1.1 Refining Attributes for the ExcelSeparator Class

During Object-Oriented analysis, the following attributes have been identified for this

class:

Table 5.3 Attributes for the ExcelSeparator Class Identified during O-O Analysis
Stage

Attributes
Lcid
App
Sheet
Book
Range
Maxcolumn
noParam
Alpha
execelSource
startPoint
Endpoint
startCelll
endCelll

At this stage, more information has to be added and the attributes have to be redefined.
The data types of the attributes have to be identified in order to enable implementation

of this class.

82

MJ\KAAN UNIVERSITI MALAYA

Table 5.4 Redefined Attributes for the ExcelSep Class

Attribute Data Type Default Value
-leid Integer 0
-app Application Null
-sheet Worksheet Null
-book _Workbook Null
-range Range Null
1 Integer 10
-noParam Variant Null
-alpha String[] An array of string with 26 members {“A”, “B”,

“Cr,SD”, SE”, SFT, “GY, “H, T, “T7, “K”,
“Lr, MY, SN, <07, <P, “Q, “R”, “S”, “T”,
SOV SWT X, €Y, <27

-execelSource tring Null
-startPoint tring Null
-endPoint tring Null
-startCelll String Null
-endCelll String Null

5.3.1.2 Refining Attributes for the ExcelCombiner Class

The attributes that have been identified earlier in the O-O analysis stage are presented in

Table 5.5. These attributes were not defined clearly as the data types were not explained

in details.

83

Table 5.5 Attributes for the ExcelCombiner Class Identified during O-O Analysis
Stage

Attributes
Lcid
Spp
myApp
Sheet
mySheet
Book
myBook
Range
Type
Error
noParam
Alpha
Filel
file2
startCelll
endCelll
startCell2
endCell2

More detailed descriptions of the attributes that belong to the ExcelSeparator class are
presented in Table 5.6 showed below. Some of the data types of the attributes are the

classes defined in the package it.bigatti.execl8 and the package com.jacob.com.

84

Table 5.6 Refined Attributes for the ExcelCombiner Class

Attribute Data Type Default Value
-lcid Integer 0

-app Application Null

-myApp Application Null

-sheet Worksheet Null

-mySheet Worksheet Null

-book Workbook Null

-myBook Workbook Null

-range Range Null

-type String Null

-error String Null
-noParam Variant Null

-alpha String|[] An array of string with 26 members {“A”, “B”,

B e st s T >
LA A R S TR T R LA AT e
“LY, “M?, NP, “0”, “P”, “Q”, “R”, “S”, “T”,
“U”, 4V, CWP, X7, 4y, Sz

filel String Null
-file2 String Null
-startCelll String Null
-endCelll String Null
-startCell2 String Null
-endCell2 String Null

5.3.1.3 Refining Attributes for the ExcelSeparatorService Class

Basically, the attributes that belong to this class have been defined clearly during the O-
O analysis stage. However, in order to enable the association “invokes” between this
class and the ExcelSeparator class, there must be an instance of the ExcelSeparator class

declared in the ExcelSep Service class. Table 5.7 shows the refined attributes for

this class.

85

Table 5.7 Refined Attributes for the ExcelSeparatorService Class

Attribute Data Type Default Value
-sourceFile String Null

-headers String[] Null
-tempFileName | String[] Null

-count Integer 0
-destinationPath | String Null

-error String Null
-objSeparator ExcelSepartor Null
-startCells String[] Null
-endCells String[] Null

5.3.1.4 Refining Attributes for the ExcelCombinerService Class

At this stage, the ExcelCombinerService class is defined in order to enable the

association “invokes” with the ExcelCombiner class. Hence, an instance of the

ExcelCombiner class is added as one attribute to this class. A list of attributes for this

class is presented in Table 5.8.

Table 5.8 Refined Attributes for the ExcelCombinerService Class

Attribute Data Type Default Value
-listOfFiles String[] Null
-errorMsg String Null

bineType | String Null
-objCombi ExcelCombi Null
-startCells String[] Null
-endCells String[] Null

86

53.2 Designing methods and protocols

The UML activity diagrams designed in Chapter 4 have reflected the methods that
should be included in all the classes for this project. All the activities have to be
converted to a programming language (in this context, Java) for implementing the
OODA system for Microsoft Excel Files. A class can provide several types of methods

(Texel and Williams, 1997). The methods are shown in Table 5.9.

Table 5.9 Types of methods for a class

No | Type of method Description

1 | Constructor Method that creates instances (object) of the
class.

2 | Destructor Method that destroys instances.

3 | Conversion Method that converts a value from one unit of
measure to another.

4 | Copy Method that copies the contents of one instance
to another i

5 | Attribute set Method that sets the values of one or more
attributes.

6 | Attribute get Method that returns the values of one or more
attributes.

7 |VO Method that provides or receives data to or from
a device.

8 | Domain specific Method that is specific to the application

The types of methods shown in the above table provide a clear guideline for designing

methods contained in a single class. The following operati P ion of the
method types has been suggested by the UML. The syntax is as below:

Visibility name: (parameter-list):return-type-expression

87

5.3.2.1 Designing methods for the ExcelSeparator Class

Basically, there are seven methods that have been identified to represent the roles played
by the ExcelSeparator class in Chapter 4. At this point, the design of the methods in this
class is conceptually complete. The following paragraphs describe the methods in

details.

The constructor ExcelSeparator which has the input parameters consist of an Excel File
name (String), a starting point for separation (String) and an ending point for separation
(String), is responsible for setting the private attributes (attribute excelSource, startPoint
and endPoint) of this class. This method will be invoked when there is a need to create

an instance of this class.

Next, a private method called openExcel performs an invocation to the Application
objects (provided by the package it.bigatti.excel8) for initialising an Excel application
object which will then open the Excel source file. This method is designed to be

accessible within this class only.

A private method called modifyFile is designed to cater for the main separation step. In
this class, a search operation is performed to identify the range of data that need to be
segregated and pasted in a new Excel file. There are two types of search operations that
are implemented in this system. The first search operation is based on searching the
exact string assigned to the startPoint and endPoint variables. If either of the strings is

not found in the Excel document, a false value will be retumed to the function called.

88

However, if the search operation returns a true value, that means the range of data has to

be copied and duplicated in a new Excel file.

The second search operation is based on searching by the name of the cells. The system
user will need to input the name of an Excel cell which is in the form of “A1”, where the
alphabet “A™ indicates the column name and the number 1 indicates the row number.
Two variables (startCelll and endCell1) are allocated to store the starting cell name and

the ending cell name. Figure 5.2 illustrates an activity diagram for this method.

89

):returnC

Duplicate the original Excel file
and open the duplicated Excel file

ExcelSeparator::-openExcel():boolean

openExcel retums false

openExcel returns true
Find excel cell with the startPoint String
or the startCell1 String

startPoint or startCell1
can't ted

Located startPoint

Find excel cell with the endPoint String
orthe endCell1 String

endPoint or endCell1
can't be located

Located endPoint

@py the range from startPoint to the endPoint

Paste the range to a new Excel file
Store the filename of the new Excel file

retumnCode = false

Figure 5.2 Activity Diagram for modifyFile method

90

A close method is needed in order to terminate the Excel application object by first
calling the save file method. This method has to be called for freeing up the memory

taken by this class while executing an Excel file separation procedure.

A method called run is prepared for invoking the private method openExcel and if the
method returns a true value, proceed to the method modifyFile. Lastly, a public method

doSeparate (see Figure 5.3) is designed for initialising a ComThread instance (provided

in the package com.jacob.com) and followed by ing an i of this class. The

instance will invoke run method. If the run method returns false, the close method is
invoked for terminating the Excel Application object. Otherwise, the separated range of
Excel data is saved with a randomly generated file name produced by the

TempFileCreator object.

91

New a ComThread
New an ExcelSeparator instance

ExcelSeparator::-modifyFile():boolean

modifyFile retums false
Excel Applicati

modifyFile retums true
Release ComThread
retumCode = false

Separate the Excel

Release ComThread

Figure 5.3 Activity Diagram for doSeparate method in ExcelSeparator class

5.3.2.2 Designing methods for the ExcelCombiner Class

The main role played by the ExcelCombiner class is to execute the combining process
on several Excel files. Here, the combined Excel file will be saved with a new filename
generated from a temporary file creator object. A constructor method with two input
parameters, a string called filel and a string called file2, is designed for setting the

private attributes filel and file2.

This class also has a method that sets combination type, called setCombineType. This
method will determine whether both filel and file2 will be combined horizontally or
vertically. A private method openExcel which returns a boolean value is designed to

create an instance of an Excel application object for opening an Excel d

(provided by the file] attribute).

Besides that, system users can also specify the start cell and the end cell in either filel or

file2. If a specific pair of start cell and end cell is provided, this class will handle the

Excel file bination by duplicating the portion (cap all the from the start

cell until the end cell) and combine it with the other part of an Excel file.

Next, a private method called getFile2 with a string value as the input parameter is
created. The string value represents the file name for an Excel file. This private method
retums a _Worksheet object by using the Excel application object provided by the

package it.bigatti.excel8.

93

A function called run (see Figure 5.4) is designed for combining two Excel files
vertically. This can be done by first identifying the last row used in filel. Add a row
below and follow by pasting the content in file2 onto the cells in filel. Eventually, there
is another public method called run2 (see Figure 5.5) designed for combining two Excel
files horizontally. The last column used in filel must be first identified. Then, add one
more column to the right. Finally, paste the content of file2 onto the cells (blank area) in

filel.

It is important to have a method that is responsible for terminating the Excel application
object. Therefore, a public method called close is designed. Meanwhile, since there is a
private attribute called error contained in this class, a setErrorMsg method and a

getErrorMsg method were designed to set and get the value of this attribute.

Finally, a public method doCombine (see Figure 5.6) that returns a boolean value is
designed for invoking the combining methods (run and run2). The doCombine method
will call the appropriate methods by referring to the value contained in the type attribute

(either horizontal value or vertical value).

94

ExcelCombiner::+run():boolean

Open Excel file1) ExcelCombiner::-OpenExcel():boolean

openExcel retums.

openExcel returns false Start cell and End cell provided

Get the portion from the
specified start cell until
the end cell

Get last row used in file1
Open Excel file2

getFile2 retums true

ExcelCombine
getFile2():boolean

getFile2 retums false

Start cell and
end cell

Get the portion from the
specified start cell until

RetumnCode = true the end cell

Figure 5.4 Activity Diagram for run method in ExcelCombiner class

95

ExcelCombiner::+run2():boolean

ExcelCombiner::-OpenExcel()boolean

openExcel

Start cell and End cell provided
retums true
openExcel retums false

Get last column used in file1

ExcelCombiner::-
getFile2():boolean

Get the portion from the
specified start cell until
the end cel

Open Excel file2

Start cell and end
getFile2 retums true °®! Provided

getFile2 retuns false
Get the portion from the
specified start cell until

returnCode = faise
Get entire content of file2
the end cell
6‘!! the contents of file2 start from the last column in ﬁ@g

ReturnCode = true

Figure 5.5 Activity Diagram for run2 method in ExcelCombiner class

ExcelCombiner:: +doCombine(): ReturnCode : boolean

Initialize a ComThread

ExcelCombiner ::+run():boolean

Type =vertical Combine filel and file2

New an ExcelCombiner
object

Return result from
run method

‘Which type of
combination ?
Type = horizontal

ExcelCombiner Combine filel and file2 Retumn result from
+run2():boolean horizontally e method

Figure 5.6 Activity Diagram for doCombine method in ExcelCombiner class

5.3.2.3 Designing methods for the ExcelSeparatorService Class

This class is responsible for accepting the invocation from the interface layer and calling
the execution of the ExcelSeparator class. In this class, a constructor is prepared for
setting the values for the attributes. These attributes are the sourceFile, headers, count
and destinationPath. A private method called setTempFileName is designed for

duplicating several Excel files and save them with a different filename. The

97

getTempFileName is a public method that returns an array of the randomly generated

filenames.

A method called separate is designed for invoking the public methods provided by the
ExcelSeparator class. Firstly, this method will call the private method
setTempFileName. If the setTempFileName returns an array of filenames, then an

of the ExcelSep class will be created and invokes its doSeparate method.

The outcome of the doSeparate method will be assigned to a boolean variable. This
boolean variable will be returned as the output of this method. If the output is true, then
it indicates a success status of separating an Excel file. Otherwise, an error must have

occurred and a public method getError is invoked for getting the error message.

5.3.2.4 Designing methods for the ExcelCombinerService class

This class is designed for accepting the request for combining several Excel files and
invoking public methods provided by the ExcelCombiner class. A constructor that has
an array of strings and a string as the input parameters is designed. The constructor
serves the purpose of setting an array of Excel filenames that need to be combined and

setting the type of combination (either horizontally or vertically).

Besides that, a private method called verifyFileFormat is created for verifying the file
extensions provided by the system user that have to be combined together. If the file
extension is not “XLS”, then the process of combining Excel files will be terminated and

returns a false value.

98

A method called getErrorMsg is designed to retum a string value. The string value
would be the error message that occurred if there is an exception thrown by any of the

methods.

Finally, a public method called bine is designed for ing an i of the

ExcelCombiner class and execute the public methods provided. This method will return
a boolean value. A true value indicates a success status in combining several Excel files

while a false value means there is an i d and the bining process has

failed.

5.3.3 Packages and managing classes

All the elements including the classes can be grouped into UML packages. The packages
themselves may be nested within other packages. In this project, the main package
would be named as the OODA System for Microsoft Excel Files. Inside this package,
two packages are used significantly in order to complete the objectives of this project.
These two packages are the com.jacob.com package and the it.bigatti.excel8 package.
Figure 5.7 illustrates a more complete class diagram for the OODA system for Microsoft

Excel Files.

99

OODA System for
Microsoft Excel files

Com.jacob.com Itbigatti.excel8

Figure 5.7 The OODA System for Microsoft Excel files package

100

54 Designing Access Layer

The Unified Approach (UA) has proposed the Layered Approach in designing classes.
This Layered Approach defines a type of classes that is responsible for accessing data
storage and these classes will not be accessible directly from the user interface layer

objects. This type of classes is defined as access layer classes.

Designing access layer is about icating with a Database M: System

(DBMS). A DBMS is a set of p that are responsible for the creation and

&

maintenance of a collection of interrelated data. In this project, the DBMS used is the
Microsoft Excel program. Microsoft Excel has been used for accessing, manipulating,

protecting and managing data.

For this project, Microsoft Excel provides persistent data storage facility. Hence, it is
necessary to create classes that can access and manipulate the data. Since Microsoft
Excel is not a Relational DBMS (RDBMS), the classes designed will not be handling

Structured Query Language (SQL) statements.

Two packages of classes are used as the access layer for this project. These two
packages are the com.jacob.com package and the it.bigattiexcel8 package. Figure 5.8
illustrates the relationship and main objects used for manipulating data stored in a

Microsoft Excel file.

101

Accessing data

com.jacob.com It bigatti.excel8
Main classes:
B Application
com.jacob.com.* "~ Workbook
_ Worksheet
Range

Figure 5.8 The Access Layer’s Packages

5.5 Designing User Interface

After designing the access layer for accessing Microsoft Excel files, it is also important
to look into the view layer (presentation layer) of this system. Interface objects construct
the view layer classes. This can be done by referring to the activity diagrams developed

during the O-O analysis stage.

Eventually, the design axioms and corollaries defined earlier must be followed in order
to produce a good presentation prototype. It is good to have a user interface (UI) that is
simple and transparent controlled by the system user. The main goal of designing the Ul

is to display and obtain information needed in an accessible and efficient manner.

102

Following, there are four diagrams that show the user interface design of the OODA

System for Microsoft Excel Files in Figures 5.9 to 5.12.

OODA System for Microsoft Excel Files > Segregating Excel Document

Please specfy the excel file that is going to be segregated:

Excel source file :
Destination Path :

(0.9 €1/ . ci/tamp/. c/my documents/}

Enter the exact phrase (case sensitive) as the Starting Point for segregating Excel File

Enter a pair of cell number (e.g: Al, A2,...) as the Starting Point and Ending Point for segragating
Excel File

click this button in case you need to refer to the original excel fle...

start Point Start Cell End Cell Description

* Must enter the word “end" to indicate the End of File

Submit Reset

Figure 5.9 User Interface for Calling ExcelSeparatorService Class

103

Yo segregated into the portions as stated below:
ICY

1 UbgradeofCable ' Header! Clexceutotomcati
Trench

2 Siab Header2 ClexcelAutotomcatdd

3 wail Header3 ClexcelAulotomcatdd
\webaposiexceNemotemo52598.ds

Figure 5.10 User Interface After Executing ExcelSeparatorService Class

OODA System for Microsoft Excel Files > Combining Excel Documents

Select combination format :

Destination Path :

= You can always dick in the Qo to file button in case you need to refer to the original
excel file.

Please specify the excel fles in order to combine into 1 excel file

Excel file 1
Excel file 2
Excel file 3
Excel file 4
Excel file 5

= Allfiles will be combined and saved in a randomly generated Excel
filename.
Please come to this page again if you intend to combine more files.

Submit Reset

Figure 5.11 User Interface for Calling ExcelCombinerService Class

104

The Excel fles listed below have been combined and saved in ClexcelAutoomcatd3
\webapps\exceltempiemp52599 s
c

* click here 1o download the combined file

click Dere to combine more Excel fles.

Figure 5.12 The User Interface after Executing ExcelCombinerService Class

56 Summary

Object-Oriented design is an iterative process. A good design will lead to a more
efficient and effective system construction. Finally, the objectives of the system can be
achieved and the system meets most of the user requirements. Therefore, it is a crucial
task to come out with a fine design before proceed to the real system development

phase.

In this chapter, all the classes (from the access layer, to the business layer and the view
layer) have been designed properly. The relationships among all the classes have been
defined as well. Diagrams showing the views of the system have also been presented.
With all these elements, it will help the system developer to construct and build the real
java code in order to implement the OODA System for the Microsoft Excel files. The

following chapter will describe the processes involved in developing this project.

105

