Chapter 6: System Development

6.1 Introduction

A proper design process has been explained in the previous chapter. Now, the real
implementation of developing this project has to be carried out based on the UML

diagrams and designs constructed during the analysis and design stage.

In this chapter, topics covered are the system development environment, software
development kit used, setup process, development process and testing process involved
in realizing the OODA System for Microsoft Excel Files. Finally, a conclusion is

presented to summarise and conclude the outcome of the system development process.

6.2 System Development Environment

System development platform that is chosen for this project is Microsoft Windows
platform. Microsoft Excel program could be installed and used without any conflicts
occurred under this platform. There are few types of Microsoft Windows platform,
namely Windows 3.*, Windows 95, Windows 98, Windows Me, Windows NT,

Windows 2000, Windows 2000 Advanced Server and Windows XP.

Among these platforms, Microsoft Windows XP Professional Edition is chosen for
developing this project. The reason for choosing Microsoft Windows XP Professional

Edition is the stability and performance of the operating system. Microsoft Windows XP

106

Professional Edition has a better improvement on its stability and performance compared
to previous version of Windows O/S such as Windows 98 and Windows 95. It is proven

by the Microsoft Corporation (Microsoft’s Challenge: Competing With Itself, 2003).

Besides that, Microsoft Excel version 2000 is needed for completing this project. The
dynamic link library (DLL) for Microsoft Excel program has to be placed in the
windows system directory. The DLL has to be used by the java classes that were

designed properly during the O-O design stage for manipulating Excel files.

6.3 Software Development Kit

It is important to use appropriate tools before starting any system development. For
developing this project, Java 2 SDK (J2SDK) provided by Sun Microsystems has been
chosen. J2SDK includes useful tools for developing and testing programs which are
written in Java programming language and run on Java platform. These tools are
designed to be used from the command line. There is no graphical user interface

provided for using these tools. A proper installation of J2SDK has to be carried out in

order to utilise these tools. Section 6.3.2 explains the installation instructions. However,
a detailed checking on the system requirements for utilising J2SDK must be carried out
first for deciding whether the current system platform can be used or some upgrades

need to be done. Section 6.3.1 below will first explain the system requirements for

J2SDK.

107

6.3.1 System Requirements

In order to be able to use the J2SDK tools (windows version), a machine must be

equipped with either one of the following operating systems. These operating systems

are shown in Table 6.1.

Table 6.1 Operating Systems accepted by J2SDK

3

Operating System A

Microsoft Windows 95

Microsoft Windows 98 (1¥ or 2™ Edition)

NT 4.0 with Service Pack 6

Windows ME

Windows 2000 Professional

Windows 2000 Server

Windows 2000 Advanced Server

| [ov| L& Lo — [z
e

Windows XP Operating Systems running on Intel hardware

Besides that, there are certainly some minimum hardware requirements that must be

followed in order to utilise the J2SDK tools. Generally, a Pentium 166MHz or faster

processor is needed for better system performance. A 32MB of Random Access Memory

(RAM) is needed as well. Finally, there must be at least 70 MB of hard disk space for

developing a J2SDK complaint system.

108

6.3.2 J2SDK Installation Instructions

In order to install J2SDK, a self-installing executable program has to be run to unpack
the J2SDK bundle. J2SDK can be downloaded from the Java Sun Microsystems’s
website at http:/java.sun.com. Figure 6.1 below shows the file structure of J2SDK after

downloaded from the website:

Jdk13.1_02

LICENSE

bin lib demo
COPYRIGHT

Include

README

Readme.html Include-old

Figure 6.1 J2SDK File Structure

After executing the exe file (j2sdk-1_3_1_02-windows-i586.exe), J2SDK has been
installed properly in the machine. Reboot system is required in order to complete
windows systems registry modifications. A process of setting the environment variable
is required in order to enable the use of the J2SDK tools under any physical file
directories. Use the command showed below for setting the environment variable.

Set PATH=%PATH%;C:\JDK131\BIN

The above command should be written in a system file called autoexec.bat.

109

When all of these actions were done accordingly, the system development process

proceeds to the setting of a web server tool called Tomcat.

6.4 Setup Process

As the installation of the J2SDK tools has been done completely, the next step would be
setting up an interface engine by utilising a server tool called Tomcat. The purpose of
choosing Tomcat is to be able to construct the Java Servlet pages. These Java Servlet
pages act as the interface layer objects which are responsible for the interaction between

the OODA System for Microsoft Excel Files and its users.

Tomcat is a Java Servlet container and the JavaServer Pages (JSP) implementation. It
may be used stand alone, or in conjunction with several popular web servers such as
Apache, version 1.3 or later, Microsoft Intemet Information Server version 4.0 or later
and Microsoft Personal Web Server version 4.0 or later. It needs a Java Runtime
Environment (JRE) version 1.1 or later. Tomcat also requires a Java compiler, which is
already provided by the J2SDK tools. For this project, Tomcat developed by Apache

Software Foundation is chosen and the installation process is described in section 6.4.1.

110

6.4.1 Tomcat Server Setup Process

Firstly, Tomcat that is a free open source program could be downloaded from the
Apache Software Foundation website at http://jakarta.apache.org/. The downloaded file
is in the format of zip or tar.gz. Table 6.2 explains the steps involved when setting up the

Tomcat server.

Table 6.2 Tomcat Server Installation Steps

No. | Steps

1 Unzip the file into a directory (say foo). This should create a new subdirecotry
named “jakarta-tomcat-3.3.1”. Move this subdirectory to the root directory (say ¢
drive) and named it tomcat33.

2 | Set a new environment variable called TOMCAT_HOME to point to the root
directory of the tomcat.

On Win32, type

“set TOMCAT_HOME-=c:\tomcat33” in the bat file.

3 Set the environment variable JAVA_HOME to point to the root directory of the
JDK tools, then add the JDK131\bin\tools.jar and JDK131\bin\rt jar to the PATH
environment variable. All these steps are done on the autoexec.bat file (Win32
system).

As all of the steps mentioned in Table 6.2 are carried out successfully, the Tomcat
Server can now be used for executing the Java Servlet pages. For ensuring this, go to the
command prompt and change the directory to c:\tomcat33\bin. This step is shown in

Figure 6.2.

111

S DNS Promp

Figure 6.2 Tomcat Start up command

The startup command run under the c:\tomcat33\bin directory will automatically invoke
the Tomcat Server application. If the command window shown in Figure 6.3 pop up
automatically, then it gives a sign showing that the Tomcat Server has been installed

successfully.

112

Figure 6.3 Tomcat Start Up Successfully

To shut down the Tomcat Server application, just go back to the command prompt
window, change the directory to c:\tomcat33\bin again and type shutdown. This should
be able to completely terminate the Tomcat Server application. The shutdown step is

shown in Figure 6.4

113

5-DOS Prompt

Figure 6.4 Tomcat Shutdown command

In order to ensure that the Tomcat Server could be used to execute Java Servlet pages,

the following steps need to be carried out. These steps are shown in Table 6.3.

Table 6.3 Testing Java Servlet Pages

No. | Steps

1 Go to ¢ d prompt and change directory to c:\tomcat33\bin

2 Type startup at the command prompt

3 Open an internet browser application (Internet Explorer or Netscape

Communicator) and go to http://localhost/index. html.

4 Click on the servlet examples link and execute few examples of servlet pages
provided.
5 | Type shutdown at the command prompt to stop the Tomcat Server application.

After all the above steps have been carried out and tested with a few of the Java Servlet

pages, the Tomcat Server is ready for the real system development of this project.

114

Figure 6.5 shown below is the first screen
http://localhost/index.html using Microsoft Internet Explorer.

seen when

reaching

Do E® Vew Favoies Jook . b % 5 w
b - 2 QR A Qewch Gifevcies Prioe F|B- BB 7 8 -~ z
e Acabo ek
= ek @ et v Bshorora - @Tied @Ccrey @cracets Prn’
Tomcat
Vorsion 32:1
This is the defautt Tomcat home paga. This page

« </path/to/tomcat>/wabpages/index. htal

nd is located
luded withis code, and JSP, a README, 8
tochnical FAQ on this release of yac filas which are
JSP and Serviets
Examples.
« JSP Examples
- Servl

Documentaton:

« APl docs for Serviet and JSP Packages

known bugs,

e ‘
EJUEGBH.] oK .| s | 8} 2| 8o Oov| JN5 005 | e]-JvTI_

Figure 6.5 Testing Tomcat Server

=

I B iirawn
[ET-27-21 =T

115

6.5 Development Process

After setting up the JDK tools and the Tomcat Server, the development process has now
reached the coding process. In order to fasten the development process, a Java program
text editor has been chosen to write the Java program. The text editor application chosen

was Kawa version 3.51.

The Kawa version 3.51 is used for constructing Java files (with the extension *java).
The Java files are then compiled by using the JDK1.3.1 tools. Hence, the class files
(with the extension *.class) are produced. These class files are then need to be placed in
the TOMCAT_HOME\webapps (TOMCAT_HOME is the environment variables that
shows the physical directory of Tomcat application server) directory correctly in order to
be invoked while processing the Java Servlet pages. Figure 6.6 shows the processes

involved in developing this project.

116

Install Kawa 3.51 text editor
program

Construct a Java file

in the classpath environment

!

Compile the Java file using
JDK 1.3.1 compiler

(Include all Java packages needed

Check the Java
program

Store the class file

Figure 6.6 Process Involved in Creating Java file and Class file

Next, the Java Servlet pages have to be created as well. The Java Servlet pages act as the
interface layer objects for the interaction between OODA system for Microsoft Excel
Files and the system users. The differences between a Java Servlet page development

and the normal Java program development are shown in Table 6.4.

117

Table 6.4 Differences between a Java Servlet page and a normal Java program

Java Servlet

Normal Java program

Import javax.servlet.* package

Doesn’t need to import javax.servlet.*
package

Import javax.servlet.http.* package

Doesn’t need to import javax.servlet.http.*
package

Object extends HttpServlet class

Never extends HttpServlet class

doGet(HttpServletRequest req,
HttpServletResponse res) function has to
be created

Doesn’t need doGet function

dPost(HttpServletRequest req,
HttpServletResponse res) function has to
be created

Doesn’t need doPost function

Use HttpServletResponse instance to get
the PrintWriter object for writing output

Use System.out.printIn() function for
writing output

The JDK1.3.1 compiler which has been installed earlier is needed in the process of

compiling the Java Servlet pages. This is the similarity characteristics between a Java

Servlet page and a normal Java coding page.

Finally, all class files generated after compilations have to be placed in a proper

directory so that the Java Servlet Pages could be executed successfully. The Java Servlet

container, Tomcat Server must be configured properly.

Figure 6.7 shows the process of creating a proper directory to place the class files. Table

6.5 explains the configuration involved in order to create a virtual path to access the Java

Servlet pages from the Internet browser.

118

Go to
TOMCAT_HOME
directory

Enter into webapps
directory

Create a directory
called excel

Create a sub-directory
called web-inf

Create a sub-directory called
classes under the web-inf
directory

Place all *.class files

in this sub-directory

Figure 6.7 Creating Directory in Tomcat Servlet Application

119

Table 6.5 Tomcat Configuration Steps

No | Steps

1 | Go to TOMCAT_HOME conf directory

2 | Search for server.xml file and open it for editing

3 | Add the XML tag showed below in the server.xml file

<Context path="/excel"
docBase="webapps/excel"
crossContext="true"
debug="0"
reloadable="true"
trusted="false" >
</Context>

These XML have to be added within the <ContextMana; tag.

4 | Save the server.xml file

6.6 Java Codes Testing Process

Each compiled Java page (either Java Servlet or the normal java page) has to be tested to

ensure the correctness of the system functions and minimize program errors. To begin

the testing process, Tomcat Server has to be started first. Open a command prompt
window and go to the TOMCAT_HOME directory. Type startup at the command
prompt and wait for the invocation of the Tomcat Server application. Once the server

was started up successfully, the Java Servlet pages can be executed.

Open Internet Explorer and type the URL http://localh I/servlet/svtS Excel
in the location bar. This will present the first page for the entry point of segregating an
Excel file. Test with an Excel file and segregate it to different portions by entering the

exact phrases found in the file.

120

TAKAAN UNIVERSITI MALAYA

st

Once the Excel segregation part has been tested successfully, continue the testing

process by typing the URL http://localhost/excel/serviet/svtCombineExcel in the

location bar. Test with combining several Excel files either horizontally or vertically.

6.7 Conclusion
As the conclusion of this chapter, the most important step in system development is the
testing on each of the Java codes. This is to ensure that the functionality of each Java

object developed meet the requirements set during the system analysis and design stage

that were discussed previously.

In the next chapter, an overall explanation of testing for this project will be presented.

121

