

PERPUSIANAAN UNIVERSITI MALAYA

ACL-6331 INVC 19/12/00

WASTE WATER RECYCLING IN A PAINT MANUFACTURING PLANT

BINA KUMARI DEY

DISSERTATION SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH UNIVERSITY OF MALAYA 50603, KUALA LUMPUR

Perpustakaan Universiti Malaya
A508766401

Dimikrofiskan pada	20.12. 2001
No Mikrofis	15140
Jamlah Mikrofis	2
I IND UNI	T. MOHAMAD ZAHARI IT REPROGRAFI RPUSTAKAAN UTAMA VERSITI MALAYA

WASTE WATER RECYCLING IN A PAINT MANUFACTURING PLANT

BY

BINA KUMARI DEY

SUPERVISED

BY

ASSOC. PROF. DR. BHASKAR SEN GUPTA PROF. MOHD ALI HASHIM

DISSERTATION SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH UNIVERSITY OF MALAYA 50603, KUALA LUMPUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTERS OF TECHNOLOGY (ENV.MANAGEMENT)

ACKNOWLEDGEMENT

I would first of all like to thank my supervisors Associate Professor Bhaskar Sengupta and Professor Mohd Ali Hashim for their advice, guidance and comments throughout the preparation of this dissertation.

My sincere gratitude also to Mr. Ronnie Chin and En. Roslan Md. Deres for their assistance in providing the samples for analysis.

I would also like to thank my coursemate Md. Shameem Hasan for always being the helpful person that he is, and Isita Sengupta, Uma and En. Osman for their assistance during the course of my labwork. To Molly and Raffiti, thanks for all your assistance in compilation of the literature required for the preparation of this dissertation.

Last but not least, I would like to thank Dr. Amira Mohd Al-Tai for her advice and guidance relating to the microbiological studies undertaken in this study.

ABSTRACT

Waste minimisation can be effected through programmes such as waste reduction at source, recycling and reclamation; and careful control of manufacturing procedures with emphasis on wastage reduction and safety. This study focuses on waste reduction through recycling of waste water for reuse within a paint manufacturing plant. Currently, the effluent stream emanating from the plant's waste water treatment plant (WWTP) contains BOD, COD and suspended solids, concentrations of which are above legislative limits imposed by the Department of Environment (DOE).

The possibility of recycling waste water emanating from a paint factory's waste water treatment plant was evaluated. The existing waste water treatment facility provides preliminary, primary and secondary treatment. The present study focuses on further treatment of the effluent via coagulation - flocculation processes prior to membrane applications.

In recent years, polymer applications in industrial wastewater treatment have become very important due to the increased pollutant removal efficiencies, easier sludge disposal, economy in chemicals consumption and other advantages. Polymers are used either as coagulants or coagulant aids for the aggregation of colloidal particles.

Coagulation - flocculation efficiencies were studied using a combination of alum and lime with and without addition of a polyelectrolyte. Optimum dose of coagulant and coagulant aid were determined based on removal efficiencies measured in terms of turbidity and COD. Increased turbidity removal efficiency of 99.6% was observed from effluent treated with alum, lime and polyelectrolyte. Considerable reduction of organic and inorganic loads were also recorded. Maximum removal efficiency of 74% COD was documented.

The performance of a cross-flow membrane filtration (CMF) unit was evaluated using pre-treated and untreated effluent from the WWTP. Pre-treated effluent increased the limiting flux by 100%. The study also showed that CMF was able to remove all microbiological contaminants in the waste water.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
ABSTRACT	ii
CONTENTS	iii
LIST OF TABLE	vii
LIST OF FIGURES	vii
ABBREVIATIONS	ix

CHAPTER 1: INTRODUCTION

1.0	PREAMBLE		1	
1.1	WASTE MINIMISATION PRACTICES IN VARIOUS COUNTRIES			
	1.1.1	Waste Minimisation in the United States	3	
	1.1.2	Waste Minimisation in the United Kingdom	6	
	1.1.3	Waste Minimisation in the European Union	7	
	1.1.4	Waste Minimisation in Malaysia	8	
1.2	RESEA	RCH OBJECTIVES	10	

CHAPTER 2: LITERATURE REVIEW

2.0	WATE	R USE AND FUTURE DEMANDS	13
2.1	INDUS	TRIAL WATER POLLUTION	14
2.2	WAST	E WATER RECLAMATION TECHNIQUES	16
	2.2.1	Adsorption	16
	2.2.2	Ion Exchange	17
	2.2.3	Chemical Precipitation	18

TABLE OF CONTENTS (Cont'd)

			Page No.
2.2.4	Membra	ane Separation Processes	20
2.3	GLOBA	L TRENDS IN WATER RECYCLING	23
	2.3.1	Waste Water Reclamation and Reuse in the U.S	23
	2.3.2	Waste Water Reclamation and Reuse in Europe	25
	2.3.3	Waste Water Reclamation and Reuse in Australia	26
	2.3.4	Waste Water Reclamation and Reuse in Israel	28
	2.3.5	Waste Water Reclamation and Reuse in Saudi Arabia	28
	2.3.6	Waste Water Reclamation and Reuse in South Africa	29
	2.3.7	Waste Water Reclamation and Reuse in India	30
2.4	WATER	RECYCLING PRACTICES IN VARIOUS INDUSTRIES	31
	2.4.1	Waste Water Recycling Practices in the Pulp and Paper Industry	31
	2.4.2	Waste Water Recycling Practices in the Textile Dyeing Industry	34
	2.4.3	Waste Water Recycling Practices in the Paint Industry	38
2.5	MICROE	BIOLOGICAL FOULING OF WATERBASED PAINTS	40
	2.5.1	Contamination From Raw Materials	40
	2.5.2	Manufacturing Procedures	41
	2.5.3	Effect of Microbiological Spoilage	42

CHAPTER 3: MATERIALS AND METHODS

3.0	DISCRI	PTION OF EXISTING WASTE WATER TREATMENT PLANT	44
3.1	EXPERI	MENTAL METHODS	44
	3.1.1	Sampling Procedures	44
	3.1.2	Waste Water Characterisation	45

TABLE OF CONTENTS (Cont'd)

			Page No.
	3.1.3	Chemical Coagulation and Analysis	45
	3.1.4	Membrane Filtration	46
	3.1.5	Microbial Tests	47
	3.1.5.1	Redox Potential and pH Measurement	47
	3.1.5.2	Screening For Aerobic Microbiological Contamination	48
	3.1.5.3	Screening For Anaerobic Sulphate Reducing Bacteria	48
	3.1.5.4	Total Viable Count by Miles and Misra Technique	48
CHAPTER 4: RESULTS AND DISCUSSION		RESULTS AND DISCUSSION	
4.0	COAGU	LATION AND FLOCCULATION STUDIES	49
4.1	COAGU	LATION AND FLOCCULATION STUDIES	49
	4.1.1	Optimising pH	49
	4.1.2	Optimising Chemical Dosage	52
	4.1.2.1	Effect of Alum Dosage	52
	4.1.2.2	Effect of Polymers	58
4.2	CROSS	FLOW MICROFILTRATION	59
	4.2.1	Membrane Filtration without Pretreatment	60
	4.2.2	Membrane Filtration with Pretreatment	61
	4.2.2.1	Effect of Flocculation	61
4.3	SCALE	UP OF JAR TESTING STUDIES	64
	4.3.1	Scale up of Chemical Treatment Studies	64
	4.3.2	Cross-flow Micrdfiltration Studies of 10 Litres Batch	65

TABLE OF CONTENTS (Cont'd)

4.4	MICROBIOLOGICAL TESTING		
	4.4.1	Determination of pH Measurement and Redox Potential	67
	4.4.2	Screening for Microbial Contamination	68
	4.4.3	Total Viable Count by Miles and Misra Technique	70
4.5	5 WATER BALANCE		
	4.5.1	Water Reuse Strategies in the Plant	72
	4.5.2	Water Balance	73
4.6	RESIDU	AL DISPOSAL FROM CROSS-FLOW MICROFILTRATION	75
4.7	CLEANI	NG AND MAINTENANCE OF MEMBRANE	76

CHAPTER 5: CONCLUSION

5.1	COAGULATION AND FLOCCULATION	95
5.2	MEMBRANE FILTRATION	96

1

LIST OF TABLES

Page No.

Table 2.1 :	Salient Features of Various Membrane Separation Processes	21
Table 2.2 :	Municipal Waste Water Reuse in California	24
Table 2.3 :	Municipal Waste Water Reuse in Projects in the U.S in 1975	25
Table 2.4 :	Sumarry of Water Demands and estimated Reclaimed Water Available	29
Table 2.5 :	Potential Problems Encountered in Water Reuse in Paper Manufacture	32
Table 2.6 :	Effects of Microbial Degradation on Paint Ingredients	43
Table 4.1 :	Physico-chemical Characteristics of the Influent Stream	50
Table 4.2 :	Physico-chemical Characteristics of the Effluent Stream	51
Table 4.3 :	Turbidity of Influent and Permeate (Without Pre-treatment)	58
Table 4.4 :	COD Concentration of Influent and Permeate (Without Pre-treatment)	59
Table 4.5 :	Effect of Flocculation/Pre-filtration on Limiting Flux	60
Table 4.6 :	Physico-chemical Characteristics of Effluent After Coagulation - Flocculation Treatment	61
Table 4.7 :	Physico-chemical Characteristics of Effluent After Coagulation - Flocculation and Membrane Treatment	62
Table 4.8 :	pH and Redox Potential Measurements of Samples and Control	63
Table 4.9:	Screening for Aerobic and Anaerobic Microbes	65
Table 4.10	Screening of Total Viable Counts by Miles and Misra Technique	67

1

LIST OF FIGURES

Page No.

Figure 1.1 :	Waste Minimisation Alternatives	4
Figure 4.1 :	Turbidity Readings Vs. pH of Waste Water	71
Figure 4.2 :	Zeta Potential Vs. pH of Effluent Treated With Alum	71
Figure 4.3 :	Percent COD Removal Vs Alum Dosage	72
Figure 4.4 :	Relative Turbidity Vs. Alum Dosage	72
Figure 4.5 :	Percent COD Removal Vs. Polyelectrolyte Dosage at Optimum Alum Dose of 700 mg/L $$	73
Figure 4.6 :	Relative Turbidity Vs. Polyelectrolyte Dosage at Optimum Alum Dose of 700 mg/L $$	73
Figure 4.7 :	Effect of Untreated Effluent on Limiting Flux Vs. Time	74
Figure 4.8 :	Effect of Chemically Treated Water on Limiting Flux Vs. Time	74
Figure 4.9 :	Overall Water Usage Balance in The Plant	75
Figure 4.10:	Water Balance	76

1

ABBREVIATIONS

APHA	:	American Public Health Association
BOD	:	Biological Oxygen Demand
COD	:	Chemical Oxygen Demand
CFU	:	Colony Forming Units
CMF	:	Cross-Flow Microfiltration
DOE	:	Department of Environment
ED	:	Electrodialysis
EDR	:	Electrodialysis Reversal
EDTA	:	Ethylene Diamine Tetra-Acetic Acid
EPA	:	Environmental Protection Agency
EMSs	:	Environmental Management Systems
EMAS	:	Eco-Management and Audit Scheme
HEC	:	Hydroxy Ethyl Cellulose
HSWA	:	Hazardous and Solid Waste Amendments
ISO	:	International Standards Organisation
ISA	:	Iron Sulphate Media
IPC	:	Integrated Pollution Control
IPPC	:	Integrated Pollution Prevention and Control
MS	:	Malaysian Standard
MAC	:	Malaysian Accreditation Council
MAWAR	:	Malaysian Agenda for Waste Reduction
Mgd	:	million gallons per day
MW	:	Mega Watt

Abbreviations

MLPD	:	Mega Litres Per Day
Mol. Wt.	:	Molecular Weight
ND	:	Not Detected
NEERI	:	National Environmental Engineering Research Institute
NTU	:	Nephelo Turbidity Unit
bgd	:	billion gallons per day
OPP	:	Outline Perspective Plan
P2	:	Pollution Prevention
RCEP	:	Royal Commission on Environmental Protection
RCRA	:	Resource Conservation and recovery Act
R & D	:	Research and Development
RO	:	Reverse Osmosis
rpm	:	revolutions per minute
SS	:	Suspended Solids
Std. B	:	Standard B
SIM	:	Sulphate Iron Media
SRB	:	Sulphate Reducing Bacteria
SIRIM	:	Standards Institute of Research Malaysia
TC	:	Technical Committee
TDS	:	Total Dissolved Solids
TRI	:	Toxic Release Inventory
UNCED	:	United Nations Conference on Environment and Development
WWTP	:	Waste Water Treatment Plant
Zr.	:	Zirconium