APPENDICES

134

APPENDIX A

The table below shows the packages and classes in JXDB system, named xdb.

Table A-1: JXDB Packages (xdb)

XDB sub-packages

Description

xdb.io

This package consists of TextFile class, which is
designed to read any input text file, such as the
ired confi ion files.

xdb.operator

This package consists of XQuery operators and
functions in JXDB, which are needed to generate
XQuery expressions using XQuery wizard. Currently,
these operators and functions are sub-sets of what the
third-party XQuery supports in order to demonstrate
the ability of JXDB to incorporate XQuery engine to
perform XQuery facilities.

The supported operators and functions classes are:
and, or, contains, average, count, min, max, date,
Sfloat, empty, distinct values, =, >, >=, <, <=, /=,
position, sum, not, starts with and ends with.

xdb.sql

This package consists of the required database table
builder adapters. These database table builder adapters
are designed for JXDB to connect to different
database vendors and perform mapping of classes
between Java data types and database data types
during the transfer between different databases due to
the incompatibility of different data types supported
by these datat

xdb.ui

This package consists of all the UI classes for
generating and rendering JXDB graphical user
interfaces.

135

APPENDIX B

This appendix describes README.txt for JXDB system (version 1.1).

Introduction

This is a prototype of JXDB system version 1.1. This release is one of the pioneers of GUI-
based XML middleware in the market that is able to perform the integration between XML
and Relational Databases using XML XQuery. JXDB is distributed in a JAR format. This
JAR file consists of all the required classes and essential libraries to run JXDB system, such
as Borland JBuilder libraries, and JDBC drivers for Oracle 9i, Microsoft SQL 2000 and
MySQL in JAR files. Additionally, it is also inclusive of a third-party XML XQuery

engine, thus JXDB is optimised to generate and process XML XQuery queries.

Quick Start

Create a directory named xdb in C drive (or your preferred drive) and unzip the xdb.zip file
into this directory, for example: C:\xdb. Then execute “Run.cmd” (for Windows platform)
from this installation directory (C:\xdb) to launch the graphical user interface of JXDB. If
this does not work, please check the following:

1. Do you have a Java runtime environment installed? Mini JRE requi is

version 1.3 and above.
2. Is java.exe located in your classpath? Please refer to Sun website on how to setup Java

and other required libraries classpath in your environment.

136

3. Does your version of Windows use “.cmd” files or “.bat”? Should the latter be the case,
then rename the “.cmd” extension to “bat”. Error messages can be analyzed more

easily if you were to run JXDB from the command line.

Prerequisites

You must have a Java runtime envi installed on your hine. JXDB was
successfully tested with JDK 1.4.1. In addition, to fully run JXDB, you must have the
following relational databases installed before you can run JXDB. JXDB supports the
following databases:

1. Oracle 9i

. Microsoft SQL 2000

. MySQL version 4.0.15 and above. (JXDB has been tested with this version)
. Microsoft Access 2002

B woN

For installation of these databases, please refer to their official websites or user installation
guide. If you only have installed Microsoft SQL 2000, then you cannot connect to Oracle 9i
or MySQL databases. Unless you install all the databases, only then you can fully
manipulate data integration between different databases. Also, ensure that the following
libraries (JAR files) are installed before you start JXDB (p/s: they are already included in
the jxdb.jar):

. Java Runtime Environment 1.3 and above. (Fully tested with JDK 1.4)

. JDBC Driver for Oracle 9i

JDBC Diriver for Microsoft SQL 2000

JDBC Driver for MySQL
. ODBC-JDBC Driver (It is bundled together in Sun JDK 1.4 and above).

e T N

. XQuery engine library, i.e. Quip.jar

137

User Installation (First Time Installation)

You have already unpacked the distribution “.zip” file into your desired directory (For
example -> C:\xdb). Next, execute “Run.cmd” from that folder to start JXDB system. It is
as simple as that! In summary, below are simple installation steps for first time installation:

1. Create a directory of your own choice named xdb on any preferred drive.

2. Unzip “xdb.zip” file into the created installation directory or home directory.
3. The installation directory structure should look like this:

work (C:\xdb\work) — to store all the generated XML data files.

config (C:\xdb\config) — to store all the JXDB configuration files.

a
b,
c) map (C:\xdb\config\map) — to store Java data types mapping files.

d) lib (C:\xdb\lib) - to store Quip libraries and Quip XQuery engine, e.g. quip.exe.

e) Run.cmd, jxdb.jar, jxdb.exe, and README.txt.

Note: By default, the home directory is in C:\xdb. If you were to change this directory

2 2

=

path value, for example change to E:\xdb, please remember to update the variable
“JXDB_HOME?” in Run.cmd file to this new value.

First Step to Run

Open a command shell (also known as a command prompt). Change to the directory where
you found this “ReadMe.txt” file after you have unzipped the files (example, go to c:\xdb
directory). Execute the command “./Run.cmd”. You will see a GUI-based Java program
started, which is a GUI front-end for JXDB. At this moment, you can start using the JXDB
system. Please ensure that:

o All the installed databases are up and running, before you try to connect to any of these

databases via JXDB.

138

datah dedicated cad

use a

When transferring XML data to any specific
database driver and its database table builder adapter to perform the transfer process.
This is essential in order to perform data types or schema mapping between different
database vendors because of the different data types supported by these databases. For
example, to transfer XML data to Oracle 9i database, select JDBC Driver for Oracle
and its respective Oracle database table builder adapter, whereas to transfer to
Microsoft SQL 2000 database, select JDBC Driver for SQL 2000 and its respective
SQL 2000 database table builder adapter. The same concept also applies when
transferring to MySQL database. Even though JXDB provides ODBC-JDBC driver to
connect and access data from Oracle 9i, Microsoft SQL 2000 and MySQL databases,
but ODBC-JDBC driver cannot be used to transfer XML data to any of these databases

q

a dedicated database table builder adapter for this driver.

unless you have
This is mainly because of the different data types supported by these different database
vendors and the table builder adapters that are used to perform mapping of data type

schemas between these databases during XML integration process.

Limitations of XQuery Features

There are a number of XQuery features not yet implemented in the current version. This is

because of the current immature status of XQuery and likely will be remain the same until a

number of unresolved issues have been resolved by W3C XQuery working group or wait

till XQuery get W3C recommendation status in the near future. Most importantly, the

implemented features of XQuery in JXDB are greatly influenced by the compatibility and

139

supported features of a third-party component. i.e. Quip engine. The following are the
limitations of the features:
o Supports FLWOR expressions and result sets only return element and attribute nodes

and integers.

o Supports most of the W3C XQuery use cases, especially the "Use Case R - Access to

Relational Data".

o The return element nodes cannot have the word "text" as the element name as this will
cause the XQuery engine to throw exception because the keyword "text" is used by the
engine.

e Users cannot declare their own functions or sort or order by at the moment, the actual

implementation still not standardised yet.

e Operators such as "union" and "intersection" are not yet implemented. (Although "and"

and "or" are implemented due to XQuery engine has not supported yet).
e No support for generated QNames for constructed nodes.
o No support for dereference symbol.
o No support for static type checking.
e Only XPath's abbreviated syntax is supported, but users cannot do parent ("..").
o Other features are only partially implemented due to Quip compatibility and limitations.

o The list of supported built-in functions are: contains(), starts with(), ends with(),
count(), avg(), sum(), empty(), position(), distinct values(), max(), min(), float(), date(),

and, or, not, =, =, <, <=, >>=,

140

APPENDIX C

Listed below are simple instructions on how to run JXDB system:

1. Execute the “Run.cmd” file to launch JXDB system.

2. Click on “XML Files” tree to expand and display its leaf nodes. These XML data files
are pre-generated XML samples for testing purposes. JXDB will display these data in

data grid control format on Data Grid tab and also in tree format on XML tab. Please

refer to the following Figure C-1 and Figure C-2.

foraiond]
=|=| 2 |o] 4d]
T
21| sou]

Figure C-1: Displaying Data on Data Grid Control

141

~|=|r]o| 43

R y— I

=) s iy

Figure C-2: Displaying Data in Tree Format

3. Click on the * button to establish a database connection. You will see a pop-up “New
Database Connection” dialog box. Firstly, try to connect to Oracle 9i database, select
Oracle JDBC driver from the driver drop-down list. Secondly, select its respective
connection string from the connection string drop-down list. You can easily add new
JDBC driver details by modifying the Driver.ini file. Besides that, you can construct a
new or modify existing connection string based on your choice of database, port or
database URL in the Connection.ini file (these files are located in the config folder). For
example, to connect to Oracle 9i database, the JDBC driver name used is
oracle.jdbc.OracleDriver and its respective connection string constructed is
jdbc:oracle:thin:@localhost:1521:JXDB; where the database server name is
localhost, the default port used is 1521 and the database name to be connected is
JXDB. Whereas in the case of Microsoft SQL 2000, the JDBC driver name used is
com.microsoft.jdbc.sqlserver.SQLServerDriver and its respective connection string

142

=1 | o [y

Figure C-2: Displaying Data in Tree Format

3. Click on the * button to establish a database connection. You will see a pop-up “New

Database Connection” dialog box. Firstly, try to connect to Oracle 9i database, select
Oracle JDBC driver from the driver drop-down list. Secondly, select its respective
connection string from the connection string drop-down list. You can easily add new
JDBC driver details by modifying the Driver.ini file. Besides that, you can construct a
new or modify existing connection string based on your choice of database, port or
database URL in the Connection.ini file (these files are located in the config folder). For
example, to connect to Oracle 9i database, the JDBC driver name used is
oracle.jdbc.OracleDriver and its respective connection string constructed is
jdbc:oracle:thin:@localhost:1521:JXDB; where the database server name is
localhost, the default port used is 1521 and the database name to be connected is
JXDB. Whereas in the case of Microsoft SQL 2000, the JDBC driver name used is

com.microsoft.jdbe.sqlserver.SQLServerDriver and its respective connection string

142

or also known as database URL is

J

osoft:sqlserver://l h DatabaseName=JXDB; where the parameter of
the database server name is localhost, and the database name to be connected is JXDB.
The JDBC driver name used for MySQL is com.mysql.jdbc.Driver and its connection
string is jdbe:mysql:/localhost:3306/JXDB; where the database server name is
localhost, the default port used is 3306 and the database name to be connected is

JXDB.

Enter an authorised user name and a password, to access the selected database, in this
case for example, assuming user “demo” has been created and assigned necessary
security credentials in Oracle 9i before performing this step. Also, prior to connecting
to Oracle 9i database, we assume that you have created a database instance named
“JXDB” in Oracle 9i database or any other database server that you would like to
connect to. Click “OK” button to start connecting to database. Please refer to the figure

shown below:

Driver joracle jdbc OracieDriver
Connection String e oracie:thin: @locaihost: 1521:fxdb

L4 L

User Name [demo

Password [#99#

_ok | _cocar |

Figure C-3: Connecting to Oracle 9i Database Dialog

After fully d to the selected datat “Database Ci ions” tree will

add this connection to its tree node. Select the connected connection node, then enter a
SQL statement to retrieve data from the connected database. However, prior to this, you

must remember that you can only retrieve data from the “JXDB” database instance

143

(created in step 4) if the respective database has some data inside. Additionally, you can
upload some sample data to the JXDB database, such as Bids.xml, Items.xml and
Users.xml (located in one of the sub-folders in the installation folder, named “work”.
These sample data are taken from W3C XQuery Use Case samples). To upload these

sample data, proceed to step 13 before going to step 6.

. Enter a SQL Select statement at the SQL Editor TextArea, for example: “Select * from

Users”, and click on the * button to execute the SQL statement. Continue to retrieve
data from Bids and Items table. These returned data are stored as XML files and
embedded inside are its built-in mapping attributes. These generated XML files are

stored in the work folder.

. To clear SQL Editor TextArea or XQuery Editor TextArea, click on the &7 button.

. To remove or disconnect an existing database connection, select the database

connection you want to remove and then click on the =* button to disconnect the

database connection.

. To remove any unwanted generated XML file, select the unwanted XML file and then

click on the X button to delete the physical XML file from local FileSystem.

. To clear or delete all unwanted XML files, instead of deleting the file one by one as

described in the previous step 9, you can delete or clear all these XML files all at once

by clicking on the & button. This is dangerous as it will delete permanently all your

144

XML files in the work folder, but you can re-generate these files by performing step 6

provided you still have the active database connection.

_To refresh the list of files in the work folder after deleting or clearing those unwanted

XML files from step 9 or 10, click on the [2) button to refresh these files.

. You can modify any XML data via the data grid control by selecting the required XML

file from the XML tree, then click on the value of the cell you want to modify and enter
the new value. Before proceeding with another transaction, you can save the modified
data by clicking on the W button. Similarly, you can also click on the @ button which
will save all the unsaved data you made previously across several XML files just by one
single click. Once these modified data are saved, you can start transferring these

modified XML data across to different databases.

. To run XQuery Wizard, click on the /ﬂ button to launch the XQuery Builder Wizard

dialog box. Please refer to Figure C-4. You can construct your choice of XQuery
expressions (FLWOR) by selecting the XML files, its respective columns, operators
and functions from their respective drop-down lists. Once you have finished building
these XQuery expressions, click on “OK” button to close the wizard. For further details

on XQuery sample queries, please refer to APPENDIX D.

145

i

[l]

x

i

Figure C-4: XQuery Wizard

14. Finally, you can perform data transfer process to upload these XML data across
heterogeneous relational databases. Prior to this, remember to first select the correct
connection node of the database that you would want to transfer to, then click on the %
button. Upon clicking on this button, you will see a pop-up Table Builder Adapter
dialog box. Then, click on the drop-down list to select the correct table builder adapter
for the respective database. For example, to transfer to Oracle 9i database, you need to
select JDBC driver for Oracle and its respective table builder adapter is
xdb.sql.Oracle90TableBuilder. Otherwise, in the case of Microsoft SQL 2000, you
need to select JDBC driver for Microsoft SQL 2000 and its respective table builder
adapter is xdb.sql.SQL2000TableBuilder. Whereas, to transfer to MySQL database,
select JDBC driver for MySQL and its respective table builder adapter is
xdb.sql.MySQLTableBuilder. If you were to add a new JDBC driver for a specific
database, such as Sybase, you will need to create and customise a dedicated table
builder adapter for this driver before you can perform data transfer to upload these

XML data to the newly added database.

146

APPENDIX D

Basiires tuditing your onn Xuery expressins, you can cqpy and pasie dese sanple
queries to the XQuery Editor TextArea, then click on the » button to execute the XQuery
expression. Here, these XQuery syntaxes conform to the features and constraints
) SR A Oy R e i i A Sy e e R

XQuery standards as currently XML RQuery st holds woiking draft stats. Hence, eadh

vendor has its own XQuery imp) on until W3C resolves the issues and starts \©

standardise XQuery language. Several XQuery sample queries are listed below.

1. List books published by MS Book Ptd after 1999-12-31, including all their fields.

For $t1 in document("book.xml")//Row
Let $r1 := $t1/Publisher, $r2 := $tl/Date, $r3 := $t1/BookName
Where $r1 = "MS Book Ptd" and $r2 > "1999-12-31"

Return

<Row> {8rl}
{$r2}
{$r3}

</Row>

147

2. List the total count of suppliers in suppliers.xml.

For $t1 in document("suppliers.xml")
Return

<Row> <count> { 8rl } </count> </Row>

3. For each book in the book.xml, list the name of the book and author, grouped inside a

result element.

For $t1 in document("book.xml")//Row
Return
<Row>
{ $t1/BookName }{ for $a in St1/Author return $a }

</Row>

4. For each bid in the bids.xml, list the UserID, ItemNo, Bid, Bid Date and Sum of Bid

Item.

For $tl in document("bids.xml")//Row

Let $r1 := $t1/UserID, $r2 := $tl/ItemNo, $r3 := $t1/Bid, $r4 := $t1/Bid_Date, $r5 :=
Sfloat(8r2/text()) + float($r3/text())

Return
<Row> {$r1}
{82}
{813}
($r4}

<SumOfltemBid>{ $r5 }</SumOfitemBid> </Row>

148

5. For each book found in book.xml and bib.xml, list the name of the book, author and its

price from each source; extracting from multiple XML sources.

For $t1 in document("book.xml")//Row, $t2 in document("bib.xml")//Row

Where $t1/BookName = $t2/BookName

Return

<Row> <BookName> {$t1/BookName/text()}</BookName>
<Author>{$t2/Author/text() }</Author>

<Price-bn>{float(8t1/Price/node()) }</Price-bn> </Row>

6. For each item found in bids.xml and items.xml, list the UserID and its Reserve Price
where UserID contains “U01” and ItemNo from items.xml, which is the key identifier
equals to ItemNo from bids.xml; extracting from multiple XML sources based on their

relationships or keys.

For $t1 in document("bids.xml")//Row, $t2 in document("items.xml")//Row
Let $r1 := $t1/UserID, $r2 := $t2/ItemNo, $r3 := $t2/Reserve_Price, $r4 := $tl/ItemNo
Where contains($t1/UserID/text(), "U01") and $r2 = $r4
Return
<Row> { $rl }
{8r3}

</Row>

149

