APPENDIX G

Wear Resistance Test Results
<table>
<thead>
<tr>
<th>No of Run</th>
<th>Combination Factor</th>
<th>First Replication</th>
<th>Second Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Weight before test (g)</td>
<td>Weight after test (g)</td>
</tr>
<tr>
<td>1</td>
<td>A₂B₃C₄D₅</td>
<td>25.548</td>
<td>25.493</td>
</tr>
<tr>
<td>2</td>
<td>A₂B₃C₄D₁</td>
<td>24.945</td>
<td>24.914</td>
</tr>
<tr>
<td>3</td>
<td>A₂B₃C₄D₂</td>
<td>24.689</td>
<td>24.678</td>
</tr>
<tr>
<td>4</td>
<td>A₂B₃C₄D₃</td>
<td>24.591</td>
<td>24.535</td>
</tr>
<tr>
<td>5</td>
<td>A₂B₃C₄D₆</td>
<td>24.817</td>
<td>24.784</td>
</tr>
<tr>
<td>6</td>
<td>A₂B₃C₄D₇</td>
<td>25.127</td>
<td>25.037</td>
</tr>
<tr>
<td>7</td>
<td>A₂B₃C₄D₆</td>
<td>24.773</td>
<td>24.731</td>
</tr>
<tr>
<td>8</td>
<td>A₂B₃C₄D₈</td>
<td>24.393</td>
<td>24.374</td>
</tr>
<tr>
<td>9</td>
<td>A₂B₃C₄D₉</td>
<td>25.366</td>
<td>25.319</td>
</tr>
<tr>
<td>No of Run</td>
<td>Combination Factor</td>
<td>First Replication (HV)</td>
<td>Second Replication (HV)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A,B,C,D</td>
<td>76.5</td>
<td>73.2</td>
</tr>
<tr>
<td>2</td>
<td>A,B,C,D</td>
<td>64.7</td>
<td>66.4</td>
</tr>
<tr>
<td>3</td>
<td>A,B,C,D</td>
<td>87.2</td>
<td>81.9</td>
</tr>
<tr>
<td>4</td>
<td>A,B,C,D</td>
<td>75.0</td>
<td>73.4</td>
</tr>
<tr>
<td>5</td>
<td>A,B,C,D</td>
<td>77.4</td>
<td>79.4</td>
</tr>
<tr>
<td>6</td>
<td>A,B,C,D</td>
<td>81.3</td>
<td>79.1</td>
</tr>
<tr>
<td>7</td>
<td>A,B,C,D</td>
<td>71.3</td>
<td>69.4</td>
</tr>
<tr>
<td>8</td>
<td>A,B,C,D</td>
<td>72.6</td>
<td>72.1</td>
</tr>
<tr>
<td>9</td>
<td>A,B,C,D</td>
<td>83.0</td>
<td>84.0</td>
</tr>
<tr>
<td>10</td>
<td>Al-LM6</td>
<td>65.1</td>
<td>68.2</td>
</tr>
<tr>
<td>11</td>
<td>Al+Copper</td>
<td>37.0</td>
<td>43.3</td>
</tr>
</tbody>
</table>

Types Of Testing: Vickers Hardness Test

Types of Indenter

Load: 30 kg

Load Time: 10 sec

Loading speed: 55.1 um/sec

MAMKAT SAINS BAHAN
Jabatan Kejuruteraan Bahan Dan Rekabentuk
Fakulti Kejuruteraan Mekanikal & Pembuatan
Kolej Universiti Teknologi Tun Hussein Onn
APPENDIX I
Density Test Results
Density Test

Equipment: Ultrapylnometer 1000

Cell: Medium

<table>
<thead>
<tr>
<th>No</th>
<th>Combination Factor</th>
<th>Parameter</th>
<th>Run</th>
<th>Run</th>
<th>Run</th>
<th>Run</th>
<th>Run</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No. 1</td>
<td>No. 2</td>
<td>No. 3</td>
<td>No. 1</td>
<td>No. 2</td>
</tr>
<tr>
<td>1</td>
<td>$A_1B_4C_4D_4$</td>
<td>Temp. (°C)</td>
<td>27.7</td>
<td>27.7</td>
<td>27.7</td>
<td>28.0</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density (g/cm³)</td>
<td>2.6891</td>
<td>2.6871</td>
<td>2.6891</td>
<td>2.6778</td>
<td>2.6773</td>
</tr>
<tr>
<td></td>
<td>Mean Volume (cm³)</td>
<td>9.1501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Density (g/cm³)</td>
<td>2.6870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std Deviation (%)</td>
<td>0.0063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample weight (g)</td>
<td>24.586</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$A_1B_4C_4D_2$</td>
<td>Temp. (°C)</td>
<td>28.4</td>
<td>28.5</td>
<td>28.6</td>
<td>28.8</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density (g/cm³)</td>
<td>2.6842</td>
<td>2.6245</td>
<td>2.6870</td>
<td>2.6333</td>
<td>2.6300</td>
</tr>
<tr>
<td></td>
<td>Mean Volume (cm³)</td>
<td>9.2749</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Density (g/cm³)</td>
<td>2.6852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std Deviation (%)</td>
<td>0.0042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample weight (g)</td>
<td>24.155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$A_1B_2C_4D_2$</td>
<td>Temp. (°C)</td>
<td>29.2</td>
<td>29.3</td>
<td>29.3</td>
<td>29.4</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density (g/cm³)</td>
<td>2.7161</td>
<td>2.714</td>
<td>2.7138</td>
<td>2.7162</td>
<td>2.7575</td>
</tr>
<tr>
<td></td>
<td>Mean Volume (cm³)</td>
<td>9.0034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Density (g/cm³)</td>
<td>2.7143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std Deviation (%)</td>
<td>0.0045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample weight (g)</td>
<td>24.438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$A_1B_2C_2D_2$</td>
<td>Temp. (°C)</td>
<td>29.6</td>
<td>29.6</td>
<td>29.6</td>
<td>29.7</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density (g/cm³)</td>
<td>2.6989</td>
<td>2.6908</td>
<td>2.6888</td>
<td>2.6955</td>
<td>2.6917</td>
</tr>
<tr>
<td></td>
<td>Mean Volume (cm³)</td>
<td>9.3145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean Density (g/cm³)</td>
<td>2.6918</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std Deviation (%)</td>
<td>0.0104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>25.073</td>
<td>24.524</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$A_1B_2C_4D_0$</th>
<th>Temp. (°C)</th>
<th>29.9</th>
<th>29.9</th>
<th>29.9</th>
<th>29.9</th>
<th>29.9</th>
<th>29.9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td>2.7050</td>
<td>2.7038</td>
<td>2.6996</td>
<td>2.7103</td>
<td>2.7132</td>
<td>2.7102</td>
<td></td>
</tr>
<tr>
<td>Mean Volume (cm³)</td>
<td>9.1279</td>
<td>7.8408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Density (g/cm³)</td>
<td>2.7021</td>
<td>2.7112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Deviation (%)</td>
<td>0.0089</td>
<td>0.0040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample weight (g)</td>
<td>24.665</td>
<td>21.2580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$A_1B_2C_4D_1$</th>
<th>Temp. (°C)</th>
<th>30.0</th>
<th>30.1</th>
<th>30.1</th>
<th>30.2</th>
<th>30.2</th>
<th>30.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td>2.6971</td>
<td>2.6950</td>
<td>2.6921</td>
<td>2.7024</td>
<td>2.6994</td>
<td>2.6969</td>
<td></td>
</tr>
<tr>
<td>Mean Volume (cm³)</td>
<td>9.3056</td>
<td>9.2037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Density (g/cm³)</td>
<td>2.6947</td>
<td>2.6996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Deviation (%)</td>
<td>0.0071</td>
<td>0.0077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample weight (g)</td>
<td>25.076</td>
<td>24.8460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$A_1B_6C_1D_1$</th>
<th>Temp. (°C)</th>
<th>30.3</th>
<th>30.4</th>
<th>30.4</th>
<th>30.5</th>
<th>30.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td>2.7023</td>
<td>2.6991</td>
<td>2.6976</td>
<td>2.7092</td>
<td>2.7083</td>
<td>2.7054</td>
</tr>
<tr>
<td>Mean Volume (cm³)</td>
<td>9.2952</td>
<td>9.1277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Density (g/cm³)</td>
<td>2.6977</td>
<td>2.7077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Deviation (%)</td>
<td>0.0068</td>
<td>0.0057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample weight (g)</td>
<td>25.094</td>
<td>24.715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$A_2B_1C_4D_2$</th>
<th>Temp. (°C)</th>
<th>30.6</th>
<th>30.6</th>
<th>30.6</th>
<th>30.2</th>
<th>30.2</th>
<th>30.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td>2.6973</td>
<td>2.6953</td>
<td>2.6941</td>
<td>2.6927</td>
<td>2.6983</td>
<td>2.6934</td>
<td></td>
</tr>
<tr>
<td>Mean Volume (cm³)</td>
<td>9.1906</td>
<td>9.0416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Density (g/cm³)</td>
<td>2.6956</td>
<td>2.6940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Deviation (%)</td>
<td>0.0043</td>
<td>0.0038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample weight (g)</td>
<td>24.774</td>
<td>24.838</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$A_2B_2C_4D_2$</th>
<th>Temp. (°C)</th>
<th>30.5</th>
<th>30.5</th>
<th>30.6</th>
<th>30.6</th>
<th>30.6</th>
<th>30.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td>2.7037</td>
<td>2.7019</td>
<td>2.7119</td>
<td>2.7119</td>
<td>2.7135</td>
<td>2.7169</td>
<td></td>
</tr>
<tr>
<td>Mean Volume (cm³)</td>
<td>9.3239</td>
<td>8.299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Density (g/cm³)</td>
<td>2.7082</td>
<td>2.7139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Temp. (°C)</td>
<td>Vol. (cm³)</td>
<td>Density (g/cm³)</td>
<td>Mean Volume (cm³)</td>
<td>Mean Density (g/cm³)</td>
<td>Std Deviation (%)</td>
<td>Sample weight (g)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>LM6</td>
<td>31.2</td>
<td>9.2732</td>
<td>2.7054</td>
<td>9.2691</td>
<td>2.7066</td>
<td>0.003</td>
<td>25.088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.2</td>
<td>9.2662</td>
<td>2.7075</td>
<td>9.2591</td>
<td>2.7094</td>
<td>0.002</td>
<td>25.057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.3</td>
<td>9.2680</td>
<td>2.7862</td>
<td>9.2591</td>
<td>2.7094</td>
<td>0.002</td>
<td>25.057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.3</td>
<td>9.2481</td>
<td>2.7075</td>
<td>9.2591</td>
<td>2.7094</td>
<td>0.002</td>
<td>25.057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.4</td>
<td>9.2356</td>
<td>2.7075</td>
<td>9.2591</td>
<td>2.7094</td>
<td>0.002</td>
<td>25.057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.4</td>
<td>9.2356</td>
<td>2.7075</td>
<td>9.2591</td>
<td>2.7094</td>
<td>0.002</td>
<td>25.057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.5</td>
<td>9.2356</td>
<td>2.7075</td>
<td>9.2591</td>
<td>2.7094</td>
<td>0.002</td>
<td>25.057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.5</td>
<td>9.2356</td>
<td>2.7075</td>
<td>9.2591</td>
<td>2.7094</td>
<td>0.002</td>
<td>25.057</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp. (°C)</th>
<th>Vol. (cm³)</th>
<th>Density (g/cm³)</th>
<th>Mean Volume (cm³)</th>
<th>Mean Density (g/cm³)</th>
<th>Std Deviation (%)</th>
<th>Sample weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al + Cu</td>
<td>30.7</td>
<td>9.5236</td>
<td>2.7145</td>
<td>9.5129</td>
<td>2.7176</td>
<td>0.008</td>
<td>25.852</td>
</tr>
<tr>
<td></td>
<td>30.8</td>
<td>9.5044</td>
<td>2.7183</td>
<td>9.5129</td>
<td>2.7176</td>
<td>0.008</td>
<td>25.852</td>
</tr>
<tr>
<td></td>
<td>30.9</td>
<td>9.5096</td>
<td>2.7199</td>
<td>9.5129</td>
<td>2.7176</td>
<td>0.008</td>
<td>25.852</td>
</tr>
<tr>
<td></td>
<td>31.0</td>
<td>9.2351</td>
<td>2.7098</td>
<td>9.241</td>
<td>2.70</td>
<td>0.045</td>
<td>24.951</td>
</tr>
<tr>
<td></td>
<td>31.0</td>
<td>9.2351</td>
<td>2.7098</td>
<td>9.241</td>
<td>2.70</td>
<td>0.045</td>
<td>24.951</td>
</tr>
<tr>
<td></td>
<td>31.0</td>
<td>9.2351</td>
<td>2.7098</td>
<td>9.241</td>
<td>2.70</td>
<td>0.045</td>
<td>24.951</td>
</tr>
<tr>
<td></td>
<td>31.0</td>
<td>9.2351</td>
<td>2.7098</td>
<td>9.241</td>
<td>2.70</td>
<td>0.045</td>
<td>24.951</td>
</tr>
</tbody>
</table>
APPENDIX J

Compression Test Results
<table>
<thead>
<tr>
<th>Project Name: Al+Cu</th>
<th>Max. load: 85.24kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area: 314.16mm²</td>
<td>Elongation at break: 13.99mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength: 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break: 23.31%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus: 1915.29MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point: 0.14kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2%: 0.20kN/mm²</td>
</tr>
</tbody>
</table>

Graph showing load (kN) vs displacement (mm) with a linear trend indicating the load-bearing capacity of Al+Cu material.
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al(LM6)</th>
<th>Max. load : 85.58kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 4.10mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 6.83%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 7876.90MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.00kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.21kN/mm²</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al(LM6)B</th>
<th>Max. load : 85.37kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 4.33mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 7.21%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 6824.27MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.00kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.21kN/mm²</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Max. load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-MMC1A</td>
<td>85.53kN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Elongation at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.16mm²</td>
<td>4.28mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate tensile strength</th>
<th>0.27kN/mm²</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Strain at break</th>
<th>7.13%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Young's Modulus</th>
<th>8712.03MPa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Yield Point</th>
<th>0.21kN/mm²</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Yield strength @0.2%</th>
<th>0.21kN/mm²</th>
</tr>
</thead>
</table>

![Graph Showing Compression Load vs. Deformation](image-url)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al-MMC1B</th>
<th>Max. load : 85.58kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 5.65mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 9.42%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 4161.86MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.22kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.21kN/mm²</td>
</tr>
</tbody>
</table>

Graph

The graph shows the relationship between load (kN) and deformation (mm) for the compression test. The data points are plotted on a grid with axes labeled as follows:

- **X-axis (mm)**: 0.00 to 6.00
- **Y-axis (kN)**: 0.00 to 90.00

The graph includes a line of best fit indicating the trend of the data points.
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al-MMC2B</th>
<th>Max. load : 85.38kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 8.91mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 14.85%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 5862.93MPa</td>
</tr>
<tr>
<td>Yield Point : 0.19kN/mm²</td>
<td></td>
</tr>
<tr>
<td>Yield strength @0.2% : 0.20kN/mm²</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image-url)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Max. load</th>
<th>Area</th>
<th>Elongation at break</th>
<th>Ultimate tensile strength</th>
<th>Strain at break</th>
<th>Young's Modulus</th>
<th>Yield Point</th>
<th>Yield strength @0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-MMC2A</td>
<td>85.32kN</td>
<td>314.16mm²</td>
<td>7.65mm</td>
<td>0.27kN/mm²</td>
<td>12.75%</td>
<td>6134.20MPa</td>
<td>0.18kN/mm²</td>
<td>0.20kN/mm²</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al-MMC3B</th>
<th>Max. load : 85.52kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 3.84mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 6.40%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 5777.51MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.20kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.21kN/mm²</td>
</tr>
</tbody>
</table>

Graph

- x-axis: mm
- y-axis: kN
- Grid lines for visual representation
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al-MMC3A</th>
<th>Max. load : 86.19kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 3.28mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 5.46%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 10695.37MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.23kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.22kN/mm²</td>
</tr>
</tbody>
</table>

![Graph](image)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name: Al-MMC4A</th>
<th>Max. load: 85.39kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area: 314.16mm²</td>
<td>Elongation at break: 5.55mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength: 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break: 9.25%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus: 6768.55MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point: 0.19kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2%: 0.20kN/mm²</td>
</tr>
</tbody>
</table>

![Graph showing load versus deflection relationship]
<table>
<thead>
<tr>
<th>Project Name : Al-MMC4B</th>
<th>Max. load : 85.37kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 6.75mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 11.25%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 6746.33MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.20kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.20kN/mm²</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : AI-MMC5A</th>
<th>Max. load : 85.35kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 3.90mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 6.50%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 8608.06MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.23kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.21kN/mm²</td>
</tr>
</tbody>
</table>

Graph

![Graph](image)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al-MMC6A</th>
<th>Max. load : 85.38kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 2.70mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 4.50%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 9410.06MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.00kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.22kN/mm²</td>
</tr>
</tbody>
</table>

![Graph](image)
Kolej Universiti Teknologi Tun Hussein Onn
Makmal Mekanik Pepejal
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Max. load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-MMC7A</td>
<td>85.32kN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Elongation at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.16mm²</td>
<td>5.21mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate tensile strength</th>
<th>Strain at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27kN/mm²</td>
<td>8.69%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Young's Modulus</th>
<th>Yield Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>6156.43MPa</td>
<td>0.19kN/mm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield strength @0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20kN/mm²</td>
</tr>
</tbody>
</table>

Graph

- The graph shows the relationship between applied load (kN) and displacement (mm).
- The data points are plotted along the curve, indicating a linear relationship between the variables.
- The graph is used to determine the load-displacement behavior of the material being tested.
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Max. load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-MMC7B</td>
<td>85.36kN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Elongation at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.16mm²</td>
<td>4.31mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate tensile strength</th>
<th>Strain at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27kN/mm²</td>
<td>7.19%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Young's Modulus</th>
<th>Yield Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>7431.14MPa</td>
<td>0.19kN/mm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield strength @0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21kN/mm²</td>
</tr>
</tbody>
</table>

Graph

![Graph showing test data](image_url)
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Max. load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-MMC8A</td>
<td>85.35kN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Elongation at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>314.16mm²</td>
<td>4.76mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate tensile strength</th>
<th>Strain at break</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27kN/mm²</td>
<td>7.94%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Young's Modulus</th>
<th>Yield Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>6863.60MPa</td>
<td>0.19kN/mm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield strength @0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21kN/mm²</td>
</tr>
</tbody>
</table>

Graph:

- **X-axis:** mm
- **Y-axis:** KN
- **Scale:**
 - X-axis: 0.00 to 5.00 mm
 - Y-axis: 0.00 to 90.00 kN
- **Graph line:**
 - Line 1
 - Line 2
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name : Al-MMC8B</th>
<th>Max. load : 85.27kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area : 314.16mm²</td>
<td>Elongation at break : 4.79mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength : 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break : 7.98%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus : 6948.66MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point : 0.18kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2% : 0.21kN/mm²</td>
</tr>
</tbody>
</table>

![Graph showing load vs. deformation]
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Max. load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-MMC9A</td>
<td>85.33 kN</td>
</tr>
</tbody>
</table>

| Area | 314.16 mm² |

<table>
<thead>
<tr>
<th>Elongation at break</th>
<th>4.29 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate tensile strength</td>
<td>0.27 kN/mm²</td>
</tr>
<tr>
<td>Strain at break</td>
<td>7.15%</td>
</tr>
<tr>
<td>Young's Modulus</td>
<td>4228.53 MPa</td>
</tr>
<tr>
<td>Yield Point</td>
<td>0.16 kN/mm²</td>
</tr>
<tr>
<td>Yield strength @0.2%</td>
<td>0.24 kN/mm²</td>
</tr>
</tbody>
</table>

![Graph showing load vs. strain]
Compression Test Report

<table>
<thead>
<tr>
<th>Project Name: Al-MMC9B</th>
<th>Max. load: 85.44kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area: 314.16mm²</td>
<td>Elongation at break: 1.93mm</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength: 0.27kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Strain at break: 3.21%</td>
</tr>
<tr>
<td></td>
<td>Young's Modulus: 28073.09MPa</td>
</tr>
<tr>
<td></td>
<td>Yield Point: 0.00kN/mm²</td>
</tr>
<tr>
<td></td>
<td>Yield strength @0.2%: 0.22kN/mm²</td>
</tr>
</tbody>
</table>

Graph

![Graph showing compression load vs. deformation]