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ABSTRACT

MgCuZn ferrites are very important in multilayer chip inductors, which are
developed by thick film and co-firing technologies. Silver has been selected as
internal conductors for multilayer chip inductors due to the high conductivity and
low cost. However, the melting point of silver is 961°C. Therefore, the maximum
sintering temperature that can be used in ferrites processing is 950°C to prevent the
silver from melting.

The selected stoichiometric composition is Mgy 35 Cup 24 Zng.4 Fe;0,. The MgCuZn
ferrites have been synthesized by a co-precipitation process and a mixed oxide route.
The purpose for this research is to make a comparison and selection for the best
processing route yielding the optimum properties. Also, the effect of different
calcination and sintering temperatures on the properties of ferrites has been
investigated.

Generally, characterization (TGA, XRD, SEM and particle size distribution),
densification (density measurement) and electromagnetic properties (initial
permeability, Quality factor, AC and DC resistivity and loss factor) have been done
to investigate the characteristics and properties of MgCuZn ferrites.

For MgCuZn ferrites synthesized by co-precipitation process, specimens with a
calcination temperature of 650°C and a sintering temperature of 930°C possess the
optimum properties. Whereas, for MgCuZn ferrites synthesized by mixed oxide route,
specimens with a calcination temperature of 850°C and a sintering temperature of
950°C possess the optimum properties.

Overall, MgCuZn ferrites synthesized by both co-precipitation process and mixed
oxide route achieve approximately the same range of densification. However,

MgCuZn ferrites prepared by mixed oxide route shows higher initial permeability



and lower loss factor as compared to co-precipitation process. The trend for quality
factor and AC electrical resistivity in specimens prepared by both co-precipitation

process and mixed oxide route were varied according to the frequency range.
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