ANTIMICROBIAL ACTIVITY OF SELECTED FUNGI ISOLATED FROM DEE AND BARRIENTOS ISLANDS, ANTARCTICA

SHAMIA MOHAMEDAIN ABD ELGADIR YOUNIS (SGF070004)

INSTITUTE OF BIOLOGICAL SCIENCE FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

JUNE 2010

DEDICATION

A VERY SPECIAL COMPLIMENTS TO MY MOTHER AND MY HUSBAND FOR THE ENDLESS SUPPORT, LOVE AND PATIENCE DURING MY WHOLE STUDY AND WHILE I WAS WRITING MY THESIS. YOUR LOVELY SUPPORT HELPED ME WHEN I NEEDED IT THE MOST.

A VERY SPECIAL GOOD WISHES TO MY SISTERS AND BROTHERS. A VERY SPECIAL APPRECIATION FOR MY COLLEAGUES AND FRIENDS.

Acknowledgement

I would like to express my deepest gratitude and sincerest appreciation to Assoc. Prof. Dr. Siti Aisyah Alias, for her valuable advice, support, encouragement and useful supervision. Her continuous guidance enabled me to complete my research work successfully.

I am also very thankful to Ms Suhaila Omer and Ms Abiramy Krishnan, the research assistances of National Antarctic Research Centre, Institute of Ocean & Earth Science (IOES) for their considerable help.

Finally, I would like to thank everybody who has contributed to this work by their time, help and friendship.

ABSTRACT

This study reports the screening of selected fungi isolated from Dee and Barrientos Islands, Antarctica, for their antimicrobial activities using two methods: a) plug assay method and b) disk diffusion method. The plug assay was carried out as preliminary screening for biological activity against bacteria: *Bacillus subtilis, Staphylococcus aureus, Escherichia coli, pseudomonas aeruginosa,* and yeast: *Candida albicans*. The results showed that 35% from species possessed antibacterial activity; and these included: *Geomyces* sp.50-1/S₇, Unidentified 75-1/S₁, *Geomyces* sp.12-1/S₂₁, *Penecillium* sp.75-1/S₁₀, *Geomyces* sp.3-1/S₅, *Geomyces* sp.3-4/S₅ and *Geomyces* sp.146/S₅. Most of the strains exhibited antibacterial activity against Gram-positive bacteria *S. aureus* and *B. subtilis* and no activity detected against yeast.

The disk diffusion assay was carried out to confirm the bioactivity of selected fungi against bacteria: *Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus,* and yeasts: *Candida albicans, Saccharomyces cerevisiae* and *Schizosaccharomyces pombe*. In disk diffusion assay, crude ethyl acetate extracts of five strains of *Geomyces* species namely, *Geomyces* sp.50-1/S₇, *Geomyces* sp.12-1/S₂₁, *Geomyces* sp.3-1/S₅, *Geomyces* sp.3-4/S₅ and *Geomyces* sp.146/S₅, were selected for antimicrobial assay. The selection of these five strains was based on their good activity which they produced during the preliminary screening. These five strains were cultivated on Potato dextrose broth (PDB) under stationary phase for three different incubations periods 10, 15 and 21 days. The strains exhibited activity after 15 days incubation then, the activity decreased.

The results showed that, no activity was detected against yeast and *Geomyces* sp. $50-1/S_7$ and *Geomyces* sp. $12-1/S_{21}$ was lost their activity and this may be due to inconvenient liquid growth medium.

Minimum inhibitory concentration of the active extracts was carried out against; *B. subtilis, S. aureus, B. cereus* and *P. aeruginosa* and the values ranged between 6.25 mg ml⁻¹- 25 mg ml⁻¹. Minimum bactericidal concentration was determined after subculture on to Luria Agar media and the values ranged from 12.5 mg ml⁻¹ to 25 mg ml⁻¹.

TABLE OF CONTENTS

Title

DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLES OF THE CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	ix
SYMBOLS AND ABBREVIATIONS	x

CHAPTERS	Page
I INTRODUCTION	1
1.1 The Antarctic continent	1
1.1.1 Geographical position	1
1.1.2 The climatic conditions	1
1.1.2.1 The sub Antarctic region	2
1.1.2.2 The maritime Antarctic region	2
1.1.2.3 The continental Antarctic region	2
1.1.3 The microbial life in Antarctica	3
1.2 Biodiversity of Antarctic fungi	5
1.2.1 Thermal Classes of Antarctic Fungi	7
1.2.2 Physiological adaptations of fungi to continental Antarctic conditions	7
1.2.2.1 Low temperature	8
1.2.2.2 Low water availability	9
1.2.2.3 High UV radiation	11
1.3 Bioactivity of Antarctic fungi	12
1.3.1 Definition of biological activity	
1.3.2 Definition of secondary metabolites	12
1.3.3 Fungal ecology as a source of bioactive natural product	12
1.3.3.1 Fungal natural products	12

1.3.4 Biological activity of Antarctic fungi	15
1.4 Research objectives	16

2.1 Media preparation and subculture of selected Antarctic fungi	17
2.2 Preliminary screening for biological activity of Antarctic fungi	19
2.2.1 Preparation of the inoculums	19
2.3 Qualitative assay- The disc diffusion method	20
2.3.1 Extraction of fungal culture filtrate	20
2.3.2 Bioassays against test microorganisms	21
2.3.3 Quantitative assay – Minimum Inhibitory Concentration (MIC)	22
2.3.4 Quantitative assay- Minimum Bactericidal Concentration (MBC)	23

III RESULT	24
3.1 Preliminary screening for biological activity of Antarctic fungi	24
3.1.1 Antimicrobial activity of Antarctic fungi using Plug assay method	24
3.2 Biological activity of extracts of selected Antarctic fungi	26
3.2.1 Antimicrobial activity of extracts of selected fungi in disc diffusion assays	26
3.3 Quantitative assay- Minimum Inhibitory Concentration (MIC)	29
3.4 Quantitative assay- Minimum Bactericidal Concentration (MBC)	

V	DISSCUSSION	32
4.1]	Media Preparation and Subculture	32
4.2.	Preliminary screening for biological activity of Antarctic fungi	33
4.2	2.1 Antimicrobial activity of Antarctic fungi using plug assay method	33
4.3	Antimicrobial activity of extracts of selected Antarctic fungi using the disc diffusi	ion assay
	method	34
4.4 (Quantitative assay- Minimum Inhibitory Concentration (MIC) and Minimum	
Bac	tericidal concentration Concentration (MBC)	37

Ι	CONCLUSION	38	\$

REFERENCE

LIST OF FIGURES

Figure Figure 3.1	Figure's Title Photograph of inhibition zone in disk diffusion assay. The photos shows the EtOAc extracts of the five <i>Geomyces</i> strains that were exhibit positive results in four types of bacteria namely; <i>Bacillus subtilis</i> , <i>Pseudomonas aeruginosa, Bacillus cereus</i> and <i>Staphylococcus aureus</i> .	Page 28
Figure 3.2	Photograph of inhibition zone by Chloramphenicol. The	28
	diameter of disk= 6mm with 30 mg concentration.	
Figure 3.3	Photograph of microtitre plate of MIC test of <i>Geomyces</i> 146/S ₅ against <i>P. aeruginosa</i> . The pink colour result from addition of resuzarin dye which indicated the growth of the test microorganism so, the MIC value determines as a well above which it is 6.25 mg ml^{-1} .	30
Figure 3.4	Photograph shows the subculture from microtitre plate of MIC of <i>Geomyces</i> 146/S ₅ on Luria agar plates against <i>P. aeruginosa a</i> , the growth appeared on the third plate result in MBC value of 12.5 mg ml ⁻¹ .	31

LIST OF TABLES

Table	Table's Title	Page
Table: 2.1	Fungal strains and their location	18
Table: 3.1	Activity of strains against bacteria and yeast in preliminary study	25
Table: 3.2a	List of selected fungi studied for disc diffusion assay method	26
Table:3.2b	Activity of Chloramphenicol, the positive control in the disk diffusion assay	27
Table: 3.2c	Antimicrobial activity of ethyl acetate extracts of selected fungi in agar disk diffusion assay	27
Table: 3.3	Minimum inhibitory concentration (MIC) values of active extracts in mg ml ⁻¹	29
Table: 3.4	Minimum bactericidal concentration (MBC) values of active extracts in mg ml ⁻¹	31

SYMBOLS AND ABBREVIATIONS

°C	degree celsius
DMSO ₄	dimethyl sulfoxide
MIC	minimum inhibitory concentration
MBC	minimum bactericidal concentration
sp	species
μl	micro litre
%	percentage
EtOAc	ethyl acetate
BaCl ₂ 2H ₂ O	barium chloride dehydrate
μl	micro litre
mgml ⁻¹	miligrame per mililitre
B. subtilis	Bacillus subtilis
C. albicans	Candida albicans
S. cerevisiae	Saccharomyces cerevisiae
S. pombe	Schizosaccharomyces pombe
S. aureus	Staphylococcus aureus
B. cereus	Bacillus cereus
E. coli	Escherichia coli
P. aeruginosa	Pseudomonous aeruginosa