Contents

Declaration ii
Acknowledgements iii
Preface v
Abstract vi

Chapter 1. Introduction

1.1 Electrochemical Power Sources or Batteries 1

1.2 Theoretical Cell Voltage and Capacity 3

1.2.1 Free Energy 3

1.2.2 Theoretical Voltage 4

1.2.3 Theoretical Capacity 4

1.2.4 Voltage Definitions 5

1.2.4.1 Some Definitions About Different Voltages 7

1.3 Why Lithium Batteries? 7

1.4 Why Polymer Electrolytes? 10

1.5 Types of Ion Conducting Polymers 11

1.6 Essential Requirements of Good Polymer Electrolytes 13

1.7 Mechanisms of Ion Conduction 13

1.7.1 Solid State Theory (Arrhenius Equation) 17

1.7.1.1 Schottky and Frenkel Mechanism 18

1.7.2 Free Volume Theory (Vogel-Tamman-Fulcher Equation) 19

1.7.3 WLF Equation 21

1.7.4 Bruce's Theory on Ion Conduction Mechanism 23
1.7.5 The Microscopic Approach of Ion Transport in Glasses 24
1.7.6 Ion Conduction Mechanism in Plasticized Polymer Electrolytes 24

1.8 Solid State Batteries 27

1.8.1 Disadvantages 28

1.8.1.1 Volume Change 28
1.8.1.2 Electrolyte Impedance 28
1.8.1.3 Discharge Product Impedance 28
1.8.1.4 Materials Compatibility 29
1.8.1.5 Manufacturability 29

1.9 Lithium Primary Batteries with Non-aqueous Electrolytes 29

1.10 Lithium Metal Secondary Batteries 30

1.11 Disadvantages of Secondary Lithium Batteries 31

1.12 Lithium Ion Batteries or Rocking-Chair Batteries 31

1.13 What is Meant by Intercalation 32

1.13.1 Criteria for Selecting Insertion Electrodes 33

1.14 Advantages of Graphite Anodes 34

1.15 Intercalation in Graphite 35

1.16 New Anode Materials for Lithium Secondary Batteries 37

1.17 Objectives of the Present Work 38

Chapter 2. Experimental 40

2.1 Method of Sample Preparation 40

2.2 ac-Impedance Spectroscopy 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 X-ray Diffraction</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Thermal Analysis</td>
<td>48</td>
</tr>
<tr>
<td>2.4.1 Differential Scanning Calorimetry</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2 Thermogravimetric Analysis</td>
<td>51</td>
</tr>
<tr>
<td>2.5 Infrared Spectroscopy</td>
<td>53</td>
</tr>
<tr>
<td>2.6 X-ray Photoelectron Spectroscopy (XPS)</td>
<td>55</td>
</tr>
<tr>
<td>2.7 Scanning Electron Microscopy</td>
<td>57</td>
</tr>
<tr>
<td>2.8 Battery Charge Discharge</td>
<td>59</td>
</tr>
</tbody>
</table>

Chapter 3. Electrical Characterisation Studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 ac-Impedance Analysis</td>
<td>63</td>
</tr>
<tr>
<td>3.1.1 Unplasticized Systems</td>
<td>63</td>
</tr>
<tr>
<td>3.1.2 Plasticized Systems</td>
<td>65</td>
</tr>
<tr>
<td>3.2 Choice of the Better Plasticizer for Conductivity Enhancement</td>
<td>66</td>
</tr>
<tr>
<td>3.3 Dielectric Relaxation Studies</td>
<td>72</td>
</tr>
<tr>
<td>3.4 Ion Conduction Mechanism</td>
<td>79</td>
</tr>
<tr>
<td>3.5 Summary</td>
<td>82</td>
</tr>
</tbody>
</table>

Chapter 4. Characterisation of Polymer Electrolytes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 X-ray Analysis</td>
<td>83</td>
</tr>
<tr>
<td>4.1.1 Unplasticized Systems</td>
<td>83</td>
</tr>
<tr>
<td>4.1.2 Plasticized Systems</td>
<td>86</td>
</tr>
</tbody>
</table>
4.2 Fourier Transform Infrared Spectroscopy (FTIR)

4.2.1 DMF Spectra

4.2.1.1 DMF + LiBF₄ Spectra
4.2.1.2 BF₄⁻ Spectra
4.2.1.3 DMF + PVDF Spectra

4.2.2 MF Spectra

4.2.2.1 MF + LiBF₄ Spectra
4.2.2.2 MF + PVDF Spectra

4.2.3 EC Spectra

4.2.3.1 EC + LiBF₄ Spectra
4.2.3.2 EC + PVDF Spectra

4.3 X-ray Photoelectron Spectroscopy (XPS)

4.3.1 Unplasticized Systems

4.3.2 Plasticized Systems

4.3.2.1 DMF Based Polymer Electrolyte System
4.3.2.2 MF Based Polymer Electrolyte System
4.3.2.3 EC Based Polymer Electrolyte System

4.4 Scanning Electron Microscopy

4.5 Summary

Chapter 5. Thermal Studies

5.1. Differential Scanning Calorimetry (DSC)

5.1.1 Unplasticized Systems
5.1.2 Plasticized Systems

5.1.2.1 DMF Based Polymer Electrolyte System 138

5.1.2.2 MF Based Polymer Electrolyte System 138

5.1.2.3 EC Based Polymer Electrolyte System 139

5.2 Thermogravimetric Analysis 141

5.2.1 Unplasticized Systems 141

5.2.2 Plasticized Systems 142

5.3 Summary 153

Chapter 6. Battery Characteristics 154

6.1 Battery Studies

6.1.1 DMF Based Polymer Electrolyte System 157

6.1.2 MF Based Polymer Electrolyte System 161

6.1.3 EC Based Polymer Electrolyte System 162

6.2 Summary 163

Chapter 7. Conclusions and Suggestions for Further Work 164

References xii

Publications xxvi