CHARACTERIZATION OF POLY (VINYLEDENE FLUORIDE)
BASED ELECTROLYTES AND BATTERIES

BY

M.MILBURN EBENEZER JACOB

A thesis submitted to
Institute of Postgraduate Studies and Research
University of Malaya
for the degree of
Doctor of Philosophy

INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH
UNIVERSITY OF MALAYA
KUALA LUMPUR
MALAYSIA

1999
DECLARATION

I hereby declare that the work reported in this thesis is my own unless specified and duly acknowledged by quotation.

31 March 1998

M. Milburn Ebenezer Jacob
Acknowledgements

"The Lord will make you the head, not the tail"

(Deu 28:13),

According to the promise, Lord Jesus blessed me throughout my life. I dedicate all the glory and honour unto Him. Without His help, I could not complete this impassable task.

I take this opportunity to sincerely thank my supervisor Assoc. Prof. Dr. Abdul Kariem Arof, for his constant source of inspiration, support and bailing me out of difficult and tricky situations during experimental phase. I express my sincere thanks to Prof. Radhakrishna, for his love, support and encouragement throughout my stay. Thanks are due to his friendly love towards me during the initial stages of my research carrier.

Special mention must be made of Assoc. Prof. Dr. Ambar Yarmo, UKM, whose help in XPS work is gratefully acknowledged. My sincere appreciation also goes to Pn. Vijaya, for her invaluable help in SEM analysis. Pn. Lim Chor Yoke, also deserve special mention for the assistance in thermal analytical work. A word of praise must also be made of Mr. Azmi, SIRIM, for allowing me to use the facilities.

I wish to thank my colleagues, Mathivanan, Anand, Shameem, Ramesh, Venga, Rajan, Amin, Bouzid and Vicky, who made my stay as a pleasant one. I also wish to thank all my friends from GTPJ.
I acknowledge with gratitude the inspiration and wise counsel received from Prof. T. Ohzuku, Osaka City University, Japan and Prof. J.L. Souquet, INPG-CNRS, France. I would like to thank the Dean and the Staff of IPSP for the help and IRPA for the financial assistance.

Last, but far from least, I wish to express my heart felt thanks to my father D. Muthu, my mother, C. Chellathai and my brothers M. Suresh D. Jacob and M. Ramesh T. Jacob for their moral support, encouragement and love.

M.M.E.J
Preface

An efficient production, storage and distribution of electrical energy are of main concern to a civilization whose mainstay is electrical energy. An offshoot of research in these lines is the development of new solid materials for electrode and electrolyte applications. The present investigation is aimed to develop a poly (vinylidene fluoride); (PVDF) based polymer electrolytes. Accordingly, the work embodied in this dissertation is devoted to the development and characterization of plasticized and unplasticized polymer electrolytes using various physico-chemical techniques. The dissertation is laid out in seven chapters.

A brief description about the history of solid electrolytes, polymer electrolytes and batteries are given in the introductory chapter followed by the chapter that reviews various analytical techniques employed to characterize the polymer electrolyte sample. Chapter III presents a detailed description about the electrical characterization of polymer electrolytes. Chapter IV deals with the characterization of polymer electrolytes by various techniques.

Chapter V gives detailed description about thermal properties of unplasticized and plasticized polymer electrolytes. The battery characterization was emphasized in Chapter VI. Chapter VII consolidates the findings of the dissertation and attempts to foresee the challenges ahead.
Abstract

In the present study, poly (vinyledene fluoride) based polymer electrolytes were prepared by the solution cast technique. The polymer salt complex gives very low ionic conductivity of the order of 10^{-7} S/cm. The ionic conductivity of the polymer electrolyte is enhanced further by the addition of plasticizers such as dimethyl formamide, methyl formate and ethylene carbonate. The ionic conductivity enhancement is more in the case of DMF plasticizer than the other plasticizers used in the present investigation. The temperature dependent ionic conductivity studies ($\log \sigma T$ Vs $1000/T$ (K$^{-1}$)) follow Arrhenius type behaviour. This implies the fact that ionic conduction in polymer electrolyte is similar to that of the ionic crystals. X-ray diffraction analysis gives information regarding the semi-amorphous nature of the polymer electrolytes. FTIR and XPS spectroscopic studies show that there is a strong interaction between the plasticizer and the salt and the interaction is mainly with the oxygen atom of the plasticizers. The XPS studies ascertain the fact that there is an interaction between the salt and the polymer and this interaction is with fluorine atom of PVDF and the Li cation of the salt. The SEM analysis provides detailed picture about the plasticizer in altering the surface of the polymer electrolyte sample. The thermal studies on plasticized polymer electrolyte systems suggest that the thermal stability is better and the crystallinity of the polymer electrolyte is reduced considerably. This reduction in crystallinity is prominent in the case of DMF plasticizer than the other plasticizers used in the present study. Polymer batteries were assembled for all the high conducting plasticizer based polymer electrolyte systems. The batteries were analyzed galvanostatically. The battery discharge curve shows poor capacity for all the batteries. This low capacity may be due to the formation of surface layer on the lithium metal, high internal resistance of the battery due to the electrode/electrolyte interface and the low ionic conductivity of the polymer electrolytes. Studies are on to improve the ionic conductivity of the polymer electrolytes further and replacing the lithium metal with lithium transition metal oxides.
Contents

Declaration ii

Acknowledgements iii

Preface v

Abstract vi

Chapter 1. Introduction

1.1 Electrochemical Power Sources or Batteries 1

1.2 Theoretical Cell Voltage and Capacity 3

1.2.1 Free Energy 3

1.2.2 Theoretical Voltage 4

1.2.3 Theoretical Capacity 4

1.2.4 Voltage Definitions 5

1.2.4.1 Some Definitions About Different Voltages 7

1.3 Why Lithium Batteries? 7

1.4 Why Polymer Electrolytes? 10

1.5 Types of Ion Conducting Polymers 11

1.6 Essential Requirements of Good Polymer Electrolytes 13

1.7 Mechanisms of Ion Conduction 13

1.7.1 Solid State Theory (Arrhenius Equation) 17

1.7.1.1 Schottky and Frenkel Mechanism 18

1.7.2 Free Volume Theory (Vogel-Tamman-Fulcher Equation) 19

1.7.3 WLF Equation 21

1.7.4 Bruce's Theory on Ion Conduction Mechanism 23
1.7.5 The Microscopic Approach of Ion Transport in Glasses 24
1.7.6 Ion Conduction Mechanism in Plasticized Polymer Electrolytes 24
1.8 Solid State Batteries 27
1.8.1 Disadvantages 28
1.8.1.1 Volume Change 28
1.8.1.2 Electrolyte Impedance 28
1.8.1.3 Discharge Product Impedance 28
1.8.1.4 Materials Compatibility 29
1.8.1.5 Manufacturability 29
1.9 Lithium Primary Batteries with Non-aqueous Electrolytes 29
1.10 Lithium Metal Secondary Batteries 30
1.11 Disadvantages of Secondary Lithium Batteries 31
1.12 Lithium Ion Batteries or Rocking-Chair Batteries 31
1.13 What is Meant by Intercalation 32
1.13.1 Criteria for Selecting Insertion Electrodes 33
1.14 Advantages of Graphite Anodes 34
1.15 Intercalation in Graphite 35
1.16 New Anode Materials for Lithium Secondary Batteries 37
1.17 Objectives of the Present Work 38

Chapter 2. Experimental 40
2.1 Method of Sample Preparation 40
2.2 ac-Impedance Spectroscopy 42

viii
2.3 X-ray Diffraction

2.4 Thermal Analysis

2.4.1 Differential Scanning Calorimetry

2.4.2 Thermogravimetric Analysis

2.5 Infrared Spectroscopy

2.6 X-ray Photoelectron Spectroscopy (XPS)

2.7 Scanning Electron Microscopy

2.8 Battery Charge Discharge

Chapter 3. Electrical Characterisation Studies

3.1 ac-Impedance Analysis

3.1.1 Unplasticized Systems

3.1.2 Plasticized Systems

3.2 Choice of the Better Plasticizer for Conductivity Enhancement

3.3 Dielectric Relaxation Studies

3.4 Ion Conduction Mechanism

3.5 Summary

Chapter 4. Characterisation of Polymer Electrolytes

4.1 X-ray Analysis

4.1.1 Unplasticized Systems

4.1.2 Plasticized Systems
4.2 Fourier Transform Infrared Spectroscopy (FTIR)

4.2.1 DMF Spectra

4.2.1.1 DMF + LiBF$_4$ Spectra
4.2.1.2 BF$_4^-$ Spectra
4.2.1.3 DMF + PVDF Spectra

4.2.2 MF Spectra

4.2.2.1 MF + LiBF$_4$ Spectra
4.2.2.2 MF + PVDF Spectra

4.2.3 EC Spectra

4.2.3.1 EC + LiBF$_4$ Spectra
4.2.3.2 EC + PVDF Spectra

4.3 X-ray Photoelectron Spectroscopy (XPS)

4.3.1 Unplasticized Systems

4.3.2 Plasticized Systems

4.3.2.1 DMF Based Polymer Electrolyte System
4.3.2.2 MF Based Polymer Electrolyte System
4.3.2.3 EC Based Polymer Electrolyte System

4.4 Scanning Electron Microscopy

4.5 Summary

Chapter 5. Thermal Studies

5.1 Differential Scanning Calorimetry (DSC)

5.1.1 Unplasticized Systems
5.1.2 Plasticized Systems
 5.1.2.1 DMF Based Polymer Electrolyte System
 5.1.2.2 MF Based Polymer Electrolyte System
 5.1.2.3 EC Based Polymer Electrolyte System

5.2 Thermogravimetric Analysis
 5.2.1 Unplasticized Systems
 5.2.2 Plasticized Systems

5.3 Summary

Chapter 6. Battery Characteristics

6.1 Battery Studies
 6.1.1 DMF Based Polymer Electrolyte System
 6.1.2 MF Based Polymer Electrolyte System
 6.1.3 EC Based Polymer Electrolyte System

6.2 Summary

Chapter 7. Conclusions and Suggestions for Further Work

References

Publications