ACV 1868

OXIDATION-INDUCED STACKING FAULT IN (100) AND (111) SILICON WAFERS

LIANG MEI KEAT

Dissertasi diserahkan untuk memenuhi sebahagian keperluan bagi ijazah sarjana teknologi sains bahan

June 2002

ACKNOWLEDGEMENTS

Firstly I would like to thank Dr. Burhanuddin Kamaluddin and Mr. G. A. Tan for their support during my research and those enlightening discussions at dissertation preparation stage. Their penetrating criticism, suggestions and remarkable insights made this thesis in proper form.

Appreciation also expressed to Madam B. C. Lim of Wafer Process Engineering Department for allowing me to do this project under the department. My Sincere thanks go to colleagues from QA department and Material Characterization Department for teaching me techniques and skills required in this research.

Special thanks also go to Kamal, Azri and all WPE department members that had contributed to the success of this project both directly and indirectly. Last but not least I would like to thank my family and Swee Yong for their love, understanding, fullest support and patience throughout the research.

Liang Mei Keat

June 2002

ABSTRACT

Oxidation-induced stacking fault (OISF) dimension and density change on (100) and (111) wafers, as a result of repeated preferential etching were studied using AFM, optical microscope and angular polishing techniques. Density on (100) and (111) wafers is independent of surface removal up to 3.0µm. This indicates the single layer nature of OISF formed from the sand blasted wafer. Besides having higher density, OISFs from (100) wafer were longer than OISF from (111) wafer. OISF width increases linearly with surface removal however the length does not change significantly with surface removal. In the OISF normal depth studies using angular polishing technique, OISF depth on (100) wafer is double of those on (111) wafer, regardless of wafer sand blasting pressure. At lower blasting pressure, OISF density of (100) wafer is higher than (111) wafer because energy required to displace silicon atoms from (100) surface is much lower compared to (111) wafer's. When blasting pressure is increased to higher level, OISF density on (100) wafer saturates because all displaceable surface atoms had been displaced from their lattice. However for (111) wafer blasted at higher blasting pressure, displaceable surface atoms on (111) wafer are still available due to its higher surface packing density. Therefore when OISF density of (100) wafer saturates, OISF density of (111) wafer still presenting a linearly increasing trend until it overtakes (100)'s OISF density.

CONTENTS

ACKNOWLEDGEMENT	i
ABSTRACT	ii
CONTENT	$\mathbf{i}\mathbf{i}\mathbf{i}-\mathbf{v}$
DEFINITIONS OF ABBREVIATIONS	vi
ANALYTICAL INSTRUMENTS USED	vii
LIST OF TABLES	viii
LIST OF FIGURES	ix - xiii

CHAPTER ONE : INTRODUCTION

1.1	(100) and (111) Silicon Wafers	2
1.2	Stacking Fault (SF) and Oxidation-Induced Stacking	5
	Fault (OISF)	
1.3	Transition Metals and Gettering	9
	1.3.1 Diffusion Process and Solubility of Transition	9
	Metals in Silicon	
	1.3.2 Gettering	12
	1.3.3 Intrinsic Gettering in Silicon (IG)	14
	1.3.4 Extrinsic Gettering in Silicon (EG)	16
1.4	Motivation and Objectives	18
1.5	Outline of This Thesis	20

CHAPTER TWO : LITERATURE REVIEW 21

CHAPTER THREE : EXPERIMENTAL TECHNIQUES

3.1	Preferential Etching	32
3.2	Atomic Force Microscopy	37
CH	APTER FOUR : WAFER SURFACE ETCHING RATE	
4.1	Objective and Experimental	45
4.2	Results	
	4.2.1 Impact of Etchant Lifetime to Etching Rate	47
	4.2.2 Impact of Wafer surface Finishing to Etching	50
	Rate	
4.3	Discussion	52
CH	APTER FIVE : OISF LENGTH, WIDTH AND DEPTH	
5.1	Objective and Experimental	55
5.2	Results	
	5.2.1 OISF on (100) and (111) Wafers AFM Scanned	61
	Images	
	5.2.2 OISF Width as a Function of Surface Removal	65
	5.2.3 OISF Length as a Function of Surface Removal	66
	5.2.4 OISF Depth as a Function of Blasting Pressure	68
5.3	Discussion	
	5.3.1 OISF Length and Width Comparison between	71
	(100) Wafer and (111) Wafer	
	5.3.2 OISF Fault Plane Identification for (100) and	77
	(111) Wafer	

5.3.3	Limitation	of OIS	F Depth	Measurement	Using	80
	AFM					

CHAPTER SIX : OISF DENSITY

6.1	Objective and Experimental		
6.2	Resul	ts	
	6.2.1	OISF Density as a Function of Depth	87
	6.2.2	OISF Density as a Function of Sand Blasting	88
		Level	
6.3	Discu	ssion	90
CH	APTER	SEVEN : CONCLUSIONS	98
REI	FEREN	CES	101
APF	PENDE	K	
A.	Lim	itation of Depth Measurement by AFM	104
в.	OIS	F Depth Measured by AFM	107
р.	015	· Depen intersuited by Arm	107
C.		lanation for the Comparable OISF Width for the	110
	(10)) and (111) Planes	

v

DEFINITION OF ABBREVIATION

No	Abbreviation	Definition
1	FCC	Face-Centered Cubic
2	OISF	Oxidation Induced Stacking Fault
3	BSD	Back Side Damage
4	SF	Stacking Fault
5	DZ	Denuded Zone
6	HF	Hydrofluoric Acid
7	O ₂	Oxygen
8	IG	Intrinsic Gettering / Internal Gettering
9	EG	Extrinsic Gettering
10	CZ	Czochralski (ingot growing method)
11	BMD	Bulk Micro Defect
12	HNO ₃	Nitric Acid
13	CH ₃ COOH	Acetic Acid
14	DI water	De-ionized water
15	AFM	Atomic Force Microscope
16	SEM	Scanning Electron Microscope
17	SPM	Scanning Probe Microscope
18	STM	Scanning Tunneling Microscope
19	kpc/cm ²	kilo pieces per cm ² of wafer surface area

LIST OF ANALYTICAL INSTRUMENTS USED

No	Name	Purpose
1	Optical Microscope	For OISF density counting, and OISF depth from wafer surface measurement.
2	Atomic Force Microscope (AFM)	For OISF size change determination in between repeated etching.
3	Scanning Electron Microscope (SEM)	For fault plane inclined / tilting angle measurement.

LIST OF TABLES

	Table Title	Page
Table 1.1 :	Practical Comparison of <100>, <110> and <111> Silicon Wafers [2].	3
Table 2.1 :	Some of the Researches Done on OISF in Silicon.	30
Table 3.1 :	Etchants for Defect Delineation in Silicon.	34
Table 3.2 :	Composition of Preferential Etchant Used in This Study.	34
Table 3.3 :	Properties of Wafer Used for Etching Rate Determination.	36
Table 3.4 :	AFM Settings for Sample Scanning.	44
Table 4.1 :	Properties of Wafer Used for OISF Density and OISF Dimension Studies.	46
Table 5.1 :	Values of OISF Growth Constant A in L = At $^{n} \exp(-Q/kT)$ for Silicon [after Hu].	73
Table 5.2 :	Comparing OISF Length : Calculated Value vs Experimental Value.	73
Table 5.3 :	Inter-planar Angles between Surface Planes $\{h_1k_1l_1\}$ and Fault Planes $\{h_2k_2l_2\}$ in Silicon (Cubic) [2].	78

LIST OF FIGURES

	Figure Title	Page
Figure 1.1 :	Arrangement of atoms in the diamond-cubic crystal.	2
	Each atom has four nearest neighbours, which are	
	arranged at the corners of a tetrahedron.	
Figure 1.2 :	Schematic illustrating the tetrahedral coordination of a silicon atom in silicon crystal.	3
Figure 1.3 :	Schematic illustrating the projection of the diamond- cubic structure on a (111) plane [1].	4
Figure 1.4 :	Schematic illustrating the formation of intrinsic and extrinsic stacking faults in the diamond-cubic by the agglomeration of point defects on (111) planes [1].	6
Figure 2.1 :	Switchover of constituting surface steps from one low index-plane to another as ϕ increases beyond some critical angle ϕ_c and (b) Density of surface kinks as a function of angle ϕ deviating from a (100) plane towards, say a <010> direction.	25
Figure 2.2 :	Surface kinks on wafer surface with different surface orientation.	25
Figure 2.3	Schematic drawing of OISF formed on (100) wafer with surface orientation deviation angle is (a) 0° , (b) 3° , (c) 3° - 9° , and (d) ~10°.	28
Figure 3.1 :	Etching rate determination.	36

	0	Page
Figure 3.2 :	Principles of the AFM, showing (a) the laser reflection	38
	technique for measuring cantilever deflection, and (b) a	
	cluster of atoms on the tip sensing van der Waals forces	
	near the surface.	
Figure 3.3 :	AFM can be operated in either contact or non-contact	40
	modes, but cantilever oscillation (tapping) is more	
	universally practiced.	
Figure 3.4 :	Silicon cantilever (a) theoretical tip shape, and (b)	41
	silicon probe tip profile artifacts – front to back.	
Figure 3.5 :	Silicon cantilever (a) realistic tip shape, and (b) silicon	43
-	probe tip profile - resultant scan artifact.	
Figure 4.1 :	Etching removal vs etching time for (100) wafer at	47
rigure 4.1 :	different etchant lifetime.	47
Figure 4.2 :	Etching removal vs etching time for (111) wafer at	48
	different etchant lifetime.	
Figure 4.3 :	Etching rate of (100) and (111) wafers as a function of	49
	etchant lifetime.	
Figure 4.4 :	Etching rate comparison between etched and polished	50
8	(100) wafer.	
D ' 45		
Figure 4.5 :	Etching rate comparison between etched and polished (111) wafer.	51
	(111) water.	
Figure 4.6 :	Crystal plane and plane atomic packing density of (100)	53
	and (111) wafer.	
Figure 5.1 :	Heat cycle for wafer heat treatment after sand blasting.	56

	Figure Title	Page
Figure 5.2 :	Reference point is marked on wafer surface for repeated	56
	scanning of the same area on wafer surface.	
Figure 5.3 :	OISF length measurement using AFM.	57
Figure 5.4 :	OISF width measurement using AFM.	58
Figure 5.5 :	Schematic diagram of angular polisher.	59
Figure 5.6 :	(a) Top view and (b) side view of angular polished cleaved wafer.	60
Figure 5.7	Different OISF orientation found on (100) and (111) wafer.	61
Figure 5.8 :	(100) Wafer AFM surface topography 40 μ m x 40 μ m after (a) 0.3 μ m, (b) 0.6 μ m, (c) 0.9 μ m, (d) 1.3 μ m, (e) 2.4 μ m and (f) 3.3 μ m, surface removal.	62
Figure 5.9 :	(111) Wafer AFM surface topography 40 μ m x 40 μ m after (a) 0.3 μ m, (b) 0.6 μ m, (c) 0.9 μ m, (d) 1.3 μ m, (e) 2.3 μ m and (f) 3.2 μ m, surface removal.	63
Figure 5.10 :	OISF width at different surface removal for (100) and (111) wafers.	65
Figure 5.11 :	OISF length at different surface removal for (100) and (111) wafers.	66
Figure 5.12 :	OISF formed on (100) and (111) wafers observed under 1000x magnification by optical microscope.	67
Figure 5.13 :	Normal depth and actual depth measurement at wafer cross section.	68
Figure 5.14 :	OISF normal depth versus blasting pressure (angular polishing technique).	69

	Figure Title	Page
Figure 5.15 :	OISF depth from angular polished surface. (a) to (c) for (100) wafer and (d) to (f) for (111) wafer(200x). $ND =$ (measured depth//10 + surface removal. BP = blasting pressure.	70
Figure 5.16 :	Wafer surface scanning using AFM for scanned area of $40 \mu m \ x \ 40 \mu m.$	71
Figure 5.17	Radius of effective gettering for (100) and (111) wafer having same OISF density.	75
Figure 5.18 :	OISF width measured at different surface removal.	76
Figure 5.19 :	Cleave planes for (100) and (111) wafers.	77
Figure 5.20 :	SEM micrograph at cleaved surface for (100) and (111) wafers.	78
Figure 5.21 :	Illustration of cross sectional view for OISF orthogonal to scanning direction from (100) and (111) wafers.	80
Figure 5.22 :	Simulation of AFM tapping mode OISF depth measurement on (100) wafer having OISF fault plane (a) slanted to the right with $\theta_1 \sim 55^\circ$, (b) slanted to the left with $\theta_1 \sim 55^\circ$.	82
Figure 5.23 :	Simulation of AFM tapping mode measurement on (111) wafer having OISF fault plane (a) slant to the right with $\theta_1 > 55^\circ$, (b) slant to the left with $\theta_1 > 55$.	83
Figure 6.1 :	Positions on 5" wafer for OISF counting after every preferential etching process.	86
Figure 6.2 :	OISF density vs depth for (100) and (111) wafers (Repeated Etching Technique, plotted are the average and $\pm 3^*$ standard deviation of OISF density).	87

	Figure Title	Page
Figure 6.3	OISF density as a function of sand blasting level.	88
Figure 6.4 :	OISF density of (100) wafer vs OISF density of (111) wafer.	89
Figure 6.5 :	OISF density is independent of depth when OISF is nucleated only at surface nucleation sites.	91
Figure 6.6 :	Illustration of OISF density comparison between (100) and (111) wafers under different sand blasting energy.	94
Figure 6.7	OISF density as a function of depth (by surface polishing technique).	96

\$