TABLE OF CONTENTS

Chapter 1 Introduction

1.1 Introduction
1.2 Research Objectives
1.3 Thesis Outline
1.4 References

Chapter 2 Literature Review

2.1 Introduction
2.2 Introduction Carbon Nanotubes (CNTs)
2.2.1 Synthesis of Carbon Nanotubes
2.2.1(i) Carbon Arc-Discharge Technique
2.2.1(ii) Laser-Ablation Technique
2.2.1(iii) Chemical Vapor Deposition (CVD) Technique
2.3 Properties of Carbon Nanotubes
2.4 Alcohol Sensor
2.5 Carbon Nanotube Based Sensors
2.6 Carbon Nanotube as Alcohol Sensor
2.7 Instruments for the Characterization of carbon nanotube Composites
2.7.1 Fourier Transform Infra-red Spectrometry (FTIR)
2.7.2 Fundamental Principle of X-ray Diffraction (XRD)
2.8 References

Chapter 3 Experimental setup and MWCNT/PEO, MWCNT/PVA and MWCNT/PVA/ZnO Composites Fabrication Techniques

3.1 Introduction
3.2 Fabrication of Composites
3.2.1 MWCNT/PEO
3.2.2 MWCNT/PVA
3.2.3 MWCNT/PVA/ZnO Solution Preparation
3.3 Preparation of Nano-Sized ZnO by Ball Milling
3.4 Characterization
3.5 Experiment Setup Application as gas Sensor
3.6 Resistance Measurement
3.7 References
Chapter 4 Results and Discussions

4.1 Introduction 64
4.2 Characterization by Fourier Transform Infra-red (FTIR) 64
4.3 Scanning Electron Microscope (SEM) 67
4.4 Application of Nanocomposites as Methanol Sensor 71
4.4.1 MWCNT/PEO Composite 71
4.4.2 MWCNT/PVA Composite 74
4.4.3 MWCNT/PVA and ZnO Composite 84
4.5 References 98

Chapter 5 Conclusion

5.1 Conclusion 99
5.2 Suggestion for Future Work 100
List of Figures

Figure 1.1 Crystal structures of ZnO

Figure 2.1 Structure of SWNTs as shown in (a) and structure of MWCNTs as shown in (b).

Figure 2.2 Basic hexagonal bonding structures for one graphite layer (the ‘graphene sheet’). Carbon nuclei shown as filled circle, out-of-plane \(\pi \)-bonds, and \(\sigma \)-bonds connect the C nuclei in-plane.

Figure 2.3 The honeycomb lattice of graphene. The hexagonal unit cell contains two carbon atoms (A and B). The chiral vector determining the structure of a carbon nanotube is given by \(L \), and its length gives the circumference. The chiral angle is denoted by \(\eta \), with \(\eta = 0 \) corresponding to zigzag nanotubes and \(\eta = \pi/6 \) to armchair nanotubes.

Figure 2.4 Cross sectional structure of the FET-based sensor and the experimental geometry

Figure 2.5 The drain current measurements as a function of time with a source drain bias of 100 mV and a gate bias of 10 V

Figure 2.6 (a) Schematic diagram of experimental setup. (b) Gases used in the experiment

Figure 2.7 Change in sensor current upon exposure to different gases

Figure 2.8 The basic components of FTIR system

Figure 2.9 Major vibration modes for a nonlinear group

Figure 2.10 FTIR spectra of functionalized carbon nanotubes

Figure 2.11 X-ray Diffraction analysis

Figure 2.12 Diagram of X-ray diffractometer

Figure 2.13 XRD patterns of (a) \(\gamma \)-Fe\(_2\)O\(_3\) and (b) \(\gamma \)-Fe\(_2\)O\(_3\) –TiO\(_2\) after heat treatment at a temperature of 400°C for 1 hour, (M – maghemite, H – hematite, A – anatase)

Figure 3.1 Schematic diagram for the preparation of two groups of composites

Figure 3.2 The photograph of (a) filter paper, (b) filter paper deposited with MWCNT/PEO composite.

Figure 3.3 MWCNT/PVA colloidal solutions at different loadings

Figure 3.4 XRD patterns of ZnO ball milled for (a) 10 hours (b) 20 hours (c) 30 hours

Figure 3.5 Peaks of XRD for Zno at different time and show full width at half its maximum intensity.

Figure 3.6 Crystallite dimensions of ZnO sample with milling time

Figure 3.7 EDX spectrum of as-synthesized ZnO nanostructures

Figure 3.8 Experimental setup of the measuring system

Figure 3.9 Resistance change measured at 16.7 vol.% for various times

Figure 4.1 FTIR spectrum for MWCNT/PVA at different loading

Figure 4.2 FTIR spectrum for MWCNT/PVA and a) 1%, b)2%, c)3%, d)4% and e) 5% of ZnO.
Figure 4.3 SEM images for 5wt% of MWCNT/PVA at different magnifications (a) 20x, (b) 200x and (c) 500x.

Figure 4.4 SEM images for 4wt% of MWCNT/PVA at magnification of (a) 2000x (b) 5000x.

Figure 4.5 SEM image for 2wt% MWCNT/PVA.

Figure 4.6 SEM images for 1wt% MWCNT/PVA at (a) 2000x and (b) 5000x.

Figure 4.7 Shows SEM images for MWCNT/PVA/5%ZNO at (a) 20x, (b) 500x and (c) 1800x.

Figure 4.8 The response resistance of 9 wt% MWCNT/PEO at different methanol concentration of (a) 16.67, (b) 8.3, (c) 5, (d) 3.3 and (e) 1.7 vol%.

Figure 4.9 The response sensitivity of MWCNT/PEO at different methanol concentrations.

Figure 4.10 The resistance response of 1wt% MWCNT/PVA at various methanol concentrations (a) 16.7, (b) 8.3, (c) 5 (d) 3.3 and (e) 1.7 vol%.

Figure 4.11 The sensitivity of 1% MWCNT/PVA at different methanol concentrations.

Figure 4.12 The resistance response of 2% MWCNT/PVA at various methanol concentrations: (a) 16.7, (b) 8.3, (c) 5, (d) 3.3 and (e) 1.7 vol %.

Figure 4.13 The sensitivity response of 2wt% MWCNT at different methanol concentrations.

Figure 4.14 The response resistance of different methanol concentrations at: 3%wt MWCNT/PVA (a) 16.7, (b) 8.3, (c) 5 (d) 3.3 and (c) 1.7.

Figure 4.15 The response sensitivity 3%wt of MWCNT/PVA at different methanol concentrations.

Figure 4.16 The response resistance of 4wt% MWCNT/PVA at different methanol concentrations: (a) 16.7, (b) 8.3, (c) 5%, (d) 3.3 and (e) 1.7vol%.

Figure 4.17 The response sensitivity of 4wt% MWCNT at different methanol concentrations.

Figure 4.18 The response resistance of 5wt% MWCNT/PVA at different methanol concentrations: (a) 5, (b) 16.7, (c) 8.3, (d) 3.3 and (e) 1.7vol%.

Figure 4.19 The response sensitivity of 5wt% MWCNT/PVA at different methanol concentrations.

Figure 4.20 The response resistance of MWCNT/PVA/1%ZnO at different methanol concentrations: (a) 3.3, (b) 5, (c) 8.3, (d) 16.7 and (c) 1.7vol.%.

Figure 4.21 The sensitivity response of MWCNT/PVA/1%ZnO at different methanol concentrations.
Figure 4.22 The response resistance of MWCNT/PVA/2% ZnO at various methanol compositions: (a) 1.7, (b) 3.3, (c) 5, (d) 8.3, and (e) 16.7 vol%.

Figure 4.23 The response sensitivity of MWCNT/PVA/2% ZnO at different methanol concentrations.

Figure 4.24 The resistance response of MWCNT/PVA/3% ZnO at different methanol composition: (a) 5, (b) 16.7, (c) 8.3, (d) 3.3 and (e) 1.7 vol%.

Figure 4.25 The recorded sensitivity of MWCNT/PVA/3% ZnO at different methanol concentrations.

Figure 4.26 The resistance response of MWCNT/PVA/4% ZnO at different methanol composition: (a) 3.3, (b) 16.7, (c) 8.3, and (d) 1.7 vol%.

Figure 4.27 The sensitivity of MWCNT/PVA/2% ZnO at different methanol concentrations.

Figure 4.28 The resistance response of MWCNT/PVA/5% ZnO at different methanol composition: (a) 3.3, (b) 8.3, (c) 5, (d) 16.7 and (e) 1.7 vol%.

Figure 4.29 The sensitivity of MWCNT/PVA/5% ZnO at different methanol concentrations.
List of Tables

Table 2.1 Phase composition, lattice constants (a, b, c), average size of the crystalline blocks (D) and micro-strains of heat treated γ-Fe_2O_3 and γ-Fe_2O_3 –TiO_2 samples at 400°C

Table 3.1 Properties of triton
Table 3.2 Properties of zinc oxide
Table 3.3 Properties of absolute Methanol
Table 3.4 Facilities and materials for the experimental setup