2.0 The definition of x-kernel and OST

Chapter 2.0 The definition of x-kernel and OSI

The x-kemnel is a network-based software which implements network based
protocols. It is a new environment for implementing and composing network protocols.
This x-kernel was basically built as an attempt to improve the existing environment of
implementing and testing network protocols [3]. Examples of famous network protocols
implementation environment to date are, Berkeley’s (BSD) and System V, which uses the
Unix operating system as its platform. The x-kernel does what normally the protocol’s
service interface and peer-to-peer interface does, which is to communicate between

protocol layers and peers.

2.1 The OSI Model

This section introduces the basic model and terminology. The next section interjects
some pragmatic issues while discussing requirements for implementing portions of the OSI
model. Figure 2.1 depicts an OSI model of network architecture. The primary purpose of
the upper layers is to impose structure onto an otherwise unstructured transport service. The
primary function of the lower layers is to provide end-to-end delivery of data, subject to
quality of service requirements (e.g., reliable connection-oriented or unreliable connection-

less delivery). The distingtion is relevant from the perspective that the lower layers are

ly impl d in the ing system and hardware while the upper layers are

not. The OSI model is fundamentally a layered peer-to-peer model of interaction. Figure
2.2 depicts the service interface between protocols and peers. The familiar layered diagram
is misleading since it only depicts a layered monolithic structure and omits the peer-to-peer

aspects of the model. Indirect interaction occurs between horizontal peer entities, residing

7

2.0 The definition of x-kernel and OST

at the same functional layer, which are behaviorally related by a common set of rules or
protocol. With one exception, indirect interaction can occur only as a consequence of direct
interaction. The OSI standards define the service model and specify the details of the

protocol for each layer, but leave most implementation issues undefined.

Application Layer Application Layer
Presentation Layer Presentation Layer
Session Layer Session Layer
Transport Layer Transport Layer
Network Layer Network Layer Network Layer
Datalink Layer Datalink Layer Datalink Layer
Physical Layer Physical Layer Physical Layer
Figure 2.1 The OSI network architecture [1].
Host A Host B
High-level
object

Service High-level
Interface obiect
- Peer-to-peer v
Protocoly [9 interfaI:: | Protocol y

Figure 2.2 Service Interface between protocols and peers [3].

2.0 The definition of x-kernel and OSI

2.2 Realizing OSI-Based Object-Oriented Systems

Current network-oriented systems consist of a mixture of network services provided
by various protocol module combinations. OSI-based applications and services must co-
exist with traditional services. An object-oriented application infrastructure must
encapsulate both the upper layer OSI services and existing services, typically Internet
services. The Internet services are often encapsulated by a Remote Procedure Call (RPC)
mechanism. The usefulness of the RPC paradigm in supporting client-server inter-actions is
well known and is not discussed. In this section, the requirements for the OSI upper layers

are pi d. Figure 2.3 ill a common multi-protocol architecture used to build

distributed object-oriented applications in Unix work

Object Oriented Application Infrastructure

ISO/CCITT RPC
Upper Layer Protocols Protocol
Transport Switch
ISO/CCITT Internet Protocols
Lower Layer
Protocols

Various Subnetwork Technologies

Figure 2.3 Unix-Based Multi-Protocol Architecture [7].

The transport switch layer depicted in Figure 2.3 is not part of the standard OST model. The

switch addresses, in an elegant manner, the | ic issue of simul ly using many

2.0 The definition of x-kernel and OST

underlying transport services arising from different transport/network protocol
combinations. Different protocol combinations are required due to the varying
characteristics of different subnetwork technologies. The primary function of the switch is
to map transport service requests made by a transport user, such as the OSI session service,
onto some instance of an OSI transport service. The mechanism implementing a particular

transport service instance is most often a kernel-based protocol module accessible via a

dard system-p: ing interface. In the common case, the switch can map onto one

of a number of OSI transport/network protocol combinations, as well as the non-OSI
transport service offered by the well-known Transmission Control Protocol (TCP) in
conjunction with the Internet Protocol (IP). The mapping onto TCP/IP is done using a
convergence protocol defined in RFC 1006. In mapping onto TCP/IP, the transport switch
implements a lightweight instance of the OSI transport protocol, which expects a reliable
connection-oriented network service. Thus, using the convergence protocol defined in RFC
1006, TCP/IP appears to the switch as a reliable connection-oriented network service
instead of a stream-oriented transport service. A significant amount of implementation,
experimentation, and performance tuning has been done at the transport layer and below
with regard to the Internet protocols.

The experiences gained with lower layer ;implementations in the Internet translate
well to both the OSI lowér layers and upper layers. In particular, protocol engineers know
that excessive copying of data severely affects performance, as does layer multiplexing. In
general, there has been little attention paid to the fine-tuning of upper layer protocol
implementations with regard to the impact on concurrent applications which utilize the

upper layer services. This is due to the fact that development of new types of OSI-based

10

2.0 The definition of x-kernel and OSI

applications is lagging and in part because a lot of energy has been spent on just making
OST work, in some cases minimally, with traditional applications. Tt has been shown that
architectural choices, and their realization in upper layer implementations, can have a
dramatic affect on the ability of the services to meet the type of demands likely to be made
by more sophisticated applications. Research on lower layer protocol implementation has
led to programming techniques for stream-lining control flow within a process. From a
methodology perspective, the most important contribution to network programming to date
is the idea of structuring protocol implementations in terms of upcalls [17]. The upcall

methodology requires that the impl ion | support higher-order functions;

provide a h for passing functi or pointers to functions, as arguments to other

functions. Atkins reports on experience using upcalls in a concurrent non-object-oriented
language

A protocol provides a communication service that higher-level objects such as
application processes or higher-level protocols use to exchange messages [1]. Each protocol
or layer defines two different interfaces. First, it defines a service interface to the other
objects on the same computer that wants to use its communication services. This service
interface defines the operations that local objects can perform on the protocol. Second, a
protocol defines a peer interface to its counterpart;on other machine. This second interface

defines the form and ing of h d between protocol peers to implement

the communication service.
The x-kernel is poised as an Application Programmer Interface (API) because it
supports the rapid implementation of network protocols. A protocol implementation can be

done rapidly because the x-kernel provides a set of high-level abstractions that are tailored

11

2.0 The definition of x-kernel and OST

specifically to support protocol implementations [2][3]. The x-kernel protocols are efficient
because these abstractions are themselves implemented using highly optimized data
structures and algorithms. The API with the support of object abstractions and routines are
specially built or designed to implement network protocols in a minimal object oriented

manner. The programming language that is used to implement the protocols is the classic

ANSI C prog ing language This language is suited with the subtlest effects of object
oriented programming to that of the C++ programming language to code network protocols.
The x-kernel is not merely an object-oriented software but is built on the concepts of
object-oriented programming [4]. The C programming language is used to code structures
into libraries and routines; and the structures that share the common properties are put into
the same type of classes. A standard set of abstractions in the x-kernel is grouped together
to form a uniform interface to implement protocol abstractions. This interface is the UPI
(Uniform Protocol Interface), this interface is the core for the x-kernel to build the syntax
for communication and set the parameters for the network protocols. A deep understanding
of interfaces provided by the x-kernel helps to understand the intricacies of the mechanism
in network protocols.

The x-kernel includ s that processes, memory and

communication. These components are supponéd by special routines in the x-kernel.
Objects in the x-kernel a’re data structures, with a collection of operations that can be
exported, to other objects class. The x-kernel gives a strong representation of the service
interface between protocol layers, its infrastructure takes care of the invoking procedures
that implement particular operations on two main abstractions which is the protocol object

and the session object. With the support of the message library, participant library event

12

2.0 The definition of x-kernel and OSI

library and map library enables the x-kernel to configure and implement protocols and
protocol graphs such as IP for the former and TCP/IP for the latter. Figure 2.4 shows a
typical protocol stack of the TCP/IP protocol graph. In the figure protocols such as IP or
TCP represent protocols objects, and the session object represents the local endpoint of the

" 1

particular channel opened. This session objects are dy ically created as are

opened and closed. Channel object is an interpretation of a respective protocol object,
Channel objects are created as protocol objects export operations for opening channels.
Channel objects exports operations for sending and receiving messages with the use of the
routines xPush and xPop respectively. Exports operations of objects in the protocol graph

adhere to UPT (Uniform Protocol Interface). This can be seen clearly in Figure 2.5 [1].

TCP
Uniform
— Protocol
Interface
Y
1P
Figure 2.4 A protocol grapﬁ [1]. Figure 2.5 The Uniform Protocol Interface [1].

The x-kernel can implement network protocols in a simulation mode, as a user level
mode or in a stand-alone mode [5]. The simulation mode and the user level mode allow the

user to implement and test the protocols before putting it into the kernel. This gives an

13

2.0 The definition of x-kernel and OST

opportunity to test and tweak the network protocols before the real implementation. In the
simulation or the user level, compiling of the protocols objects into network modules is
much more straightforward, as it is implemented in the user level and not in the operating
system kernel itself. Protocols can be built, composed and tested before porting the
respective protocols into the operating system kemnel. As for the stand-alone mode the x-
kernel will be ported into the operating system kernel and it behaves exactly the same as a
network implementation in a kernel. The stand-alone mode allows two hosts to
communicate with each other without the help of the standard network kernel processes in
the operating system.

The x-kernel behaves as a protocol implementation framework that enables one to
test, compare and implement network-based protocols relatively easier than the traditional
way of network kemel programming. Basically the x-kernel sets a platform to implement

protocol modules and protocol stacks [1].

