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Chapter 3.0 The x-kernel architecture

The x-kernel architecture views a protocol as a specification of a communication
abstraction through which collections of participants exchange a set of messages. While
the protocol’s specification defines what it means to send or receive a message using the
protocol’s service interface, the x-kemel defines the precise way in which these operations
are invoked in a given system with a set of routines and library [5]. Three main
communication objects to support the x-kernel model, the objects are protocols, sessions
and messages. A set of support routines work in par with the three communication objects;
which are protocol, session and message objects to implement protocols [3]. The entire
communication system is embedded in the kernel, in effect; the x-kernel’s object-oriented
infrastructure forms the kernel of the system, with individual protocols configured in as
needed. Protocols can be coded and debugged in the simulator or user-level, and then move

them, unchanged, to the stand-alone kernel [1]. The x-kernel simulator has the same

hi ¢ and impl| i i as for the x-kernel itself.

3.1 The x-kernel architecture explained
The x-kernel architecture core functions lie in the protocol objects, session objects,
message objects with the combination of a set of support routines. The relationship between

protocols and sessions occur when message objects bind them together.
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3.1.1 Protocol objects

Protocol objects serve two main functions. Firstly, it is used to create session
objects and secondly to de-multiplex messages received from lower level session objects.
This is done on behalf of the former protocol object. A protocol object supports three
operations for creating session objects and another operation from the lower level to switch

between sessions.
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Figure 3.1 Instances of Protocol and Session objects [3].

The three support routines used to create session objects are:
session = open (protocol, invoking_protocol, participant_set)
open_enable (prototol, invoking_protocol, participant_set)

session  open_done (protocol, invoking_protocol, participant_set)

There are three main operations involved in communicating between protocols.

These three operations are:
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@)

(i)

(iid)

A high-level protocol invokes a low-level protocol’s open operation to
create a session. This session is said to be in the low-level protocol’s
class and created on behalf of the high-level protocol. Each protocol

1o

object is given a low-level capability at configuration time.

The capability for the invoking protocol is passed to the open operation.
It serves as the newly created session’s handle for that protocol.

In the third operation, the high-level protocol (open_enable) passes a
capability of itself to a low-level protocol. The latter protocol then
invokes the former protocol’s open_done operation to inform the high-

level protocol that it has created a session on its behalf,

From this, it can be seen that the first operation supports session creation triggered

by a user process. While the second and third operations, taken together, supports session
creation triggered by a message arriving from the network. The participant_set argument in
all three operations identifies the set of participants that are to communicate via the created
session. In the case of open and open_done, all members of the participant set must be
given. Whereas in open_enable not all the participants need to be specified. Participants
identify themselves and their peers with host ;addresses, port numbers and protocol
numbers. These identiﬁers; are called external identifiers. Each protocol object’s open and
open_enable operations use the map routines to save bindings of these external identifiers
for capabilities of session objects. Such capabilities for operating system objects are known

as internal identifiers.

The support routine to switch between session objects:

demux (protocol, message)
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In addition to creating sessions, each protocol also switches messages received from
the network to one of its sessions with a demux operation. The demux takes a message as an
argument, and either passes the message to one of its sessions, or creates a new session
using the open_done operation and then passes the message to it. In the case of a protocol
like IP, demux might also route the message to some other lower-level session. Each
protocol object’s demux operation makes the decision as to which session should receive
the message by first extracting the appropriate external ids from the message’s header. It
then uses a map routine to translate the external identifiers into either an internal identifier
for one of its sessions in which case demux passes the message to that session or into an
internal id for some high-level protocol in which case demux invokes that protocol’s

open_done operation and passes the message to the resulting session.

3.1.2 Session objects

A session is an instance of a protocol created at runtime as a result of an open or an
open_done operation. Intuitively, a session corresponds to the end-point of a network
connection; it interprets messages and maintains state information associated with a
connection. For example, TCP session objects imp!emem the sliding window algorithm and
associated message buffers, IP session objects fragment and reassemble datagrams, and
User Datagram Protocol (UDP) session objects only add and strip UDP headers.

Sessions support two primary operations:

push(session, message)

pop(session, message)
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The first is invoked by a high-level session to pass a message down to some low-
level session. The second is invoked by the demux operation of a protocol to pass a

message up to one of its sessions.

3.1.3 Message objects

Conceptually, messages are active objects. It either arrives at the bottom of the
kernel at a device and flows upward to a user process; or it arrives at the top of the kernel
as a user process generates them and flows downwards to a device. While flowing
downwards, a message Visits a series of sessions via its push operations. Whereas, while
flowing upwards, a message alternatively visits a protocol via its demux operation and then
a session in that protocol’s class via its pop operation. As a message visits a session on its
way down, headers are added, the message may fragment into multiple message objects, or
the message may suspend itself while waiting for a reply message. As a message visits a
session on the way up, headers are stripped, the message may suspend itself while waiting
to reassemble into a larger message, or the message may serialize itself with sibling
messages. The data portion of a message is manipulated where headers attached or stripped,
fragments created or reassembled using the buffer management.

When an incoming message arrives at the network or kernel boundary, the network
device interrupts and a kemel process is dispatched to shepherd it through a series of
protocol and session objects. This process begins by invoking the lowest-level protocol’s
demux operation. Should the message eventually reach the user/kernel boundary, the
shepherd process does an upcall and continues executing as a user process. The kernel
process is returned and made available for reuse whenever the initial protocol’s demux

operation returns or the message suspends itself in some session object. In the case of
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outgoing messages, the user process does a system call and becomes a kernel process. This
process then shepherds the message through the kernel. Thus, when the message does not
encounter contention for resources, it is possible to send or receive a message with no
process switches. Finally, messages that are suspended within some session object can later

be re-activated by a process created as the result of a timer event.

3.1.4 Relationship between protocol and sessions

One or more sessions
Inp’s class

\ One or more
Lower-level sessions

Figure 3.2 Relationship between Protocols and Sessions with Message flow [3].

Consider, the example from figure 3.2. A high-level protocol object, p that depends
on a low-level protocol object, q and a session object s, .
(i) When p is invoked by a higher level protocol, it causes p to invoke q’s open

operation with the particular set {local port, remote port}.
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(ii) The implementation of q’s open would initialize a new session s and save the
binding {local port, remote port} s in a map.

(iii)Similarly, should p invoke q’s open enable operation with a single
participant set {/ocal port}, q’s implementation of open_enable would save the

binding {local port} p in a map.

With, given the invocations of open and open_enable outlined above, q’s demux
operation would first extract the /ocal port and remote port fields from the message header
and attempt to map the pair {local port, remote port} into some session object s. If
successful, it would pass the message on to session s. If unsuccessful, q’s demux would
next try to map /ocal port into some protocol object p. If the map manager supports such a
binding, q’s demux would then invoke p’s open_done operation with the participant set
{local port, remote port} yielding some session s and then pass the message on to s.

As for the session object, figure 3.2 schematically depicts the situation. Session
object, 7 that is in protocol g’s class was created either directly via open or indirectly via
open_enable. A message can either travel from a user process down to a network device or
from a network device up to a user process. The arrows in figure 3.2 show the direction in

which the message flows.

3.1.5 The x-kernel support routines

The x-kernel provides a set of support routines that protocol implementations can
call to perform the tasks that they must perform, for example, manipulate messages,
scheduling events, and map identifiers. The key observation is that protocols look alike in

many aspects. The x-kernel simply codifies these common features and makes them
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available for protocol implementation in a set of support routines. One advantage of this
framework is that it does not need to recode from scratch [2]. For example, a single event
manager can be used by all protocols. Furthermore improvement in the algorithm of data

structure can be used to support routines that benefit all protocols.

3.1.5.1 The support routines description
(i) Message Library
The message library provides a set of efficient, high-level operations for
manipulating messages. The underlying data structure that implements messages is
optimized for fragmentation/reassembly, and for adding/stripping headers.
(i) Participant Library
Participant lists identify members of a session and are used for opening connections.
An upper protocol interested in establishing a connection constructs a participant
list and passes it to a lower protocol as a parameter of an open routine. The lower
protocol then extracts information from the participant list, possibly passing the
participant list onto its own lower protocol. Each participant in the list contains a
participant address stack; designed to facih:tate a general method of communication
encapsulated address information between protocol layers. By using pointers to
address information, one layer can pass address information through a lower layer
without having the lower layer manipulate the address information at all, not even
by copying. The address information for each participant is kept as a stack of (void
*) pointers to address components and the lengths of each component. The

component pointers are pushed or popped onto the stack by utility functions.
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(iii) Event Library

The event library provides a mechanism for scheduling a procedure to be called
after a certain amount time. By registering a procedure with the event library,
protocols are able to timeout and act on messages that have not been acknowledged
or to perform periodic maintenance functions.

(iv) Map Library

The map library provides a facility for maintaining a set of bindings between

identifiers. The map library supports operations for adding new binding to the set,
removing bindings from the set, and mapping one identifier into another, relative to
a set of bindings. Protocol implementations use these operations to translate
identifiers extracted from message headers like the addresses and port numbers into
capabilities for pointers to x-kernel objects such as Protl, Sessn, Enable objects.

(v) Thread Library

The x-kernel uses a thread-per-message model of computation, and provides
primitives for synchronizing threads. The thread function semWait is mainly used to
increment the use-count for the semaphore. This then allows the x-kernel to run on a
different thread. The x-kemel threads are created and destroyed implicitly. Threads
are created by the device driver in the ca;e of incoming messages, by the system
call in the case of (;utgoing messages and by the event library in the case of an event
firing. Threads are destroyed when they return from the outer-most procedure.

(vi) Trace Library

The trace facility is used for tracing protocol execution. Every protocol should make
use of the trace facility. In addition to the trace facilities that print information to

standard output, as described in the prc;u'ous section, the x-kernel also provides a
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facility for saving detailed trace information about protocol execution to disk.
Various protocol-specific analysis tools can later process this data. This tracing
facility supports operations for creating and managing circular trace buffers, writing
trace entries to a buffer, saving traces to a file and appending post-amble
information to trace files.

(vii) Utility Routines

This utility mainly consists of parsing routines which are used to transfer data from
storage to ROM files. ROM file is configurable file, which is configured to support
protocol implementations.

(viii) Control Operations

Control operations are used to perform arbitrary operations on protocols and
sessions, via the xControlProtl and xControlSessn operations described in [2].
These operations return an integer that indicates the length in bytes of the
information, which was written into the buffer, or —1 to indicate an error. All
implementations of control operations should check the length field before reading
or writing the buffer, returning -1 if the buffer is too small. The
checkLen(actualLength, expectedLength) macro can be used for this. The opcode
field in the control operations specifies ;he operation to be performed on the
protocol or sessiont There are two types of operations: standard ones that may be

implemented by more than one protocol and protocol specific ones [2].

This discussion on the support routines by the x-kernel only gives a brief overview

of what is available, for more detailed information of these routines is found in [2]. The real
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implementation of the x-kernel objects discussed here can be seen in ip.c program listing in

Appendix C.

3.2 The implementation environment
After coding the appropriate programs for protocols, compiling it and creating the

objects files ready for implementation is the next step in implementation process. The x-

kernel can be configured into three main imp ion envi which are in the
user-level, stand-alone and simulator mode [5]. For each and every implementation

environment, the x-kernel basically goes through a similar process of configuration.

3.2.1 Network Protocols at User Level

There are several factors that motivate protocol implementations that are outside

kernel. The most obvious of these are ease of prototyping, debugging and maintenance.
Two more factors are:

1. The co-existence of multiple protocols that provide materially differing services,

and the clear advantages of easy addition and extensibility by separating their

1 ions into self- units.

2. The ability to. exploit application-specific knowledge for improving the

performance of a particular communication protocol.
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3.2.1.1 Multiplicity of Protocols
Over the years, there has been a proliferation of protocols driven primarily by

application needs. For example, the need for an efficient transport for distributed systems

was a factor in the develop of request/ p Is in lieu of existing byte-

stream protocols such as TCP. However these protocols do not always deliver the highest
throughput. In systems that need to support both throughput-intensive and latency-critical
applications, it is realistic to expect both types of protocols to co-exist.

Future uses of workstation clusters as message passing multi computers will
undoubtedly influence protocol design: efficient implementations of this and other
programming paradigms will drive the development of new transport protocols. As newer
networks with different speed and error characteristics are deployed, protocol requirements
will change. Different network links exist at a single site, multiple protocols may need to

co-exist.

3.2.1.2 Exploiting Application Knowledge
In addition to using special purpose protocols for different application areas, further
performance advantages may be gained by exploiting application-specific knowledge to

fine tune a particular instance of a protocol. Watson and Mamrak have observed that

flicts between application-level and transport-level abstractions lead to performance

[16]. One solution to this is to describe a general-purpose protocol with

respect to a particular application. In this approach, based on application requirements, a
specialized variant of a standard protocol is used rather than the standard protocol itself. A
different application would use a slightly different variant of the same protocol. Language-
based protocol implementations as well as protocol compilers are two recent attempts at
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exploiting user specified constraints to generate efficient implementations  of
communication protocols. In particular, the notion of specializing a transport protocol to the
needs of a particular application has been the motivation behind many recent system

designs.

3.2.1.3 Alternative Protocol Structures

The discussion above argues for alternatives to monolithic ~protocol
implementations since they are deficient in at least two ways. First, having all protocol
variants executing in a single address space (especially if it is in-kernel) complicates code
maintenance, debugging, and development. Second, monolithic solutions limit the ability of
a user (or a mechanized program) to perform application-specific optimizations. In contrast,
given the appropriate mechanisms in the kernel, it is feasible to support high performance
and secure implementations of relatively complex communication protocols as user-level
libraries. Figure 3.3 and 3.4 shows different alternatives for structuring communication

protocols.

(o™
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- Device
Device Management Management
i

N

Figure 3.3 Monolithic Organizations

27



3.0 The x-kernel architecture

Figure 3.4 Non-monolithic Organizations

Traditional operating systems like UNTX and modern micro kernels such as Mach
3.0 have similar monolithic protocol organizations. The Mach 3.0 micro kernel implements
protocols outside the kernel within a trusted user-level server. The code for all system-
supported protocols runs in the single, trusted, UX server’s address space. There are at least

three variations to this basic organization d ding on the location of the network device

management code and the way in which the data is moved between the device and the
protocol server. In one variant of the system, the Mach/UX server maps network devices
into its address space, has direct access to them and is functionally similar to a monolithic
in-kernel implementation. In the second variant,; device management is located in the
kernel. The in-kernel devi;:e driver and the UX server communicate through a message

based interface. One alternative to a monolithic impl ion is to dedi a sep

user-level server for each protocol stack and separate server(s) for network device

This ar has the potential for performance problems since the

5

critical send/receive path for an application could incur excessive domain-switching

overheads because of address space crossings between the user, the protocol server and the
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device manager. That is, given identical implementations of the protocol stack and support
functions like buffering, layering and synchronization, inter-domain crossings come at a
price. Further, and perhaps more importantly, this arrangement, like the monolithic version,
does not permit easy exploitation of application-level information.

This system impl packet demultiplexing and device within the kernel.

Besides this, it also supports implementations of standard protocols such as TCP and
VMTP outside the kernel. It does not rely on any special-purpose hardware or on extensive
operating system support.

In the common case of sends and receives, the library talks to the device manager

without involving a dedicated protocol server as an intermediary. Tmplementation

application level p Is b h a UNIX compatible interface shares many features of

impl ion which enf less control on outgoing packets and does not provide the
full semantics of the UNIX socket interface, meaning that not all existing UNIX programs
will work with this implementation. Tt would be easy to combine the two implementations
into one that has neither of these deficiencies. In general, there are several alternatives to
distributing the implementation of a set of protocols among a set of address spaces (e.g., the
application, a trusted server, the kernel). Each resulting organization leads to tradeoffs in
performance, protection, ease of debugging, etc.; This paper describes the design and
implementation of one sucil organization where the protocol suite is located in a user level
library and compares it with the in-kernel and single server alternatives. Current research at
the University of Arizona tries to address the general question of protocol decomposition
into multiple domains in the context of the x-kernel [3]. Portioning an x-kernel protocol
graph among different address spaces allows performance and trust tradeoffs of various

protocol organizations to be easily explored.
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3.2.2 User Level Implementations

The Build directory for the user-level defines three main files for construction of the

x-kernel; which are (i) graph.comp, (ii) prottab and (iii) rom files [2].

@)

(ii)

(i)

Specifying a Protocol Graph: graph.comp specifies the collection of protocols
that are to be included in the kernel and the relations between them. This file is
divided into three sections; device drivers, protocols and miscellaneous
configuration parameters.

Protocol Tables: prottab a protocol table file that defines the number space for
protocols to identify each other, it identifies the relative port numbers. The x-
kernel builds a table of protocol numbers by reading configuration files at
runtime and provides operations for protocols to query this table to determine
the protocol corresponding to the protocol number. Thus, it is not necessary to
embed explicit protocol numbers in the protocol code itself,

ROM files: .rom files specify run time options, such as IP address for protocols
of the machine on which an x-kernel will be run. This file allows specification
or runtime options for protocols and various subsystems. Each rom entry
consists of a single line. The first field in each line specifies the particular
protocol of a subsystem that should inte‘rpret that line. The rest of the fields are

specific to that particular protocol or subsystem.

3.2.3 Simulator Tmplementation

The network simulator based on the x-kernel provides a framework for developing,

analyzing and testing network protocols. The x-kernel provides the tool x-sim to test

network protocols. The x-sim is tightly integrated with the x-kernel architecture; it runs x-
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kernel protocols and protocols can be moved between the simulator and the x-kernel
without changes. In the simulator a special protocol called SIAM layer is included at the
bottom of all the host protocol stacks. This will be explained later in chapter 5 with the
IPvé6 protocol for simulation issues.

The graph.comp file is still used in the simulator, but only to specify which protocol
modules to include in the executable. At runtime the simulator reads a configuration file
called xsim.data, which specifies the network topology.

In summary, building the protocol graph for a simulation involves two stages:

luding the Y P | modules in the simul ble (via graph.comp) and
specifying at runtime the protocol graphs for the individual simulated hosts (via xsim.data).
[6].
(i) Internet Configuration: xsim.data
This file specifies most aspects of a simulation, including the structure or the
simulated internetwork and the tests to be run. This file contains a set of entries of
each, which describes an Internet component such as network, routers, or hosts and
defines macro variables.
(ii) graph.comp
This file serves the same purpose as descr;bed for the user-level implementation,
but in this file 1he’ relationship between protocols specified are ignored by the
simulator. This file is only as a means of specifying which protocols module to

include during runtime.

Finally, after configuring the configuration files in both in the simulation and user-

level these files go through the compilation proc-ess. The compilation process is followed
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by an installation and configuring of the x-kernel and x-sim into Linux process. The steps
in building the executables is almost similar for both cases in its particular directories,
except for some small tweaks in the make command procedure of the compiling process.

The level and simulator impl ion gives an opportunity for the protocol

developer to test and run simulations before implementing the protocols in a stand-alone
kernel. The simulator can also be used to just run new protocols from a basic internetwork
structure using a host to host network using Point-to-Point link or an Ethernet to investigate
IP implementations. In this context the issues related with IPv6 is based on the minimal

specification of RFC2460.

3.3 Designs and Implementation of User-Level Protocols
3.3.1 Design Overview

This section describes the design phase at a higher level. In this design, protocol
functionality is provided to an application by three interacting components.

(i) A protocol library that is linked into the application.

(i)  Aregistry server that runs as a privileged process.

(iii) A network /O module that is co—loc:?ted with the network device driver.
Figure 3.5 shows an ovs:rall view of our design and the interaction between the

components.
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Figure 3.5 Structure of the Protocol Implementation
The library contains the code that impl the ication protocol. For

instance, typical protocol functions such as retransmission, flow control, check summing,
are located in the library. Given the timeout and retransmission mechanisms of reliable
transport protocols, the library typically would be multithreaded. Applications may link to
more than one protocol library at a time. For example, an application using TCP will
typically link to the TCP, IP, and ARP libraries.

The registry server handles the details of allocating and deallocating communication
end-points on behalf of the applications. Before a;pplications can communicate with each
other, they have to be named in a mutually secure and non-conflicting manner. The registry
server is a trusted piece of software that runs as a privileged process and performs many of
the functions that are usually implemented within the kernel in standard protocol

) ions. There is a dedicated registry server for each protocol.

P

The third module implements network access by providing efficient and secure

input packet delivery, and outt d packet transmission. There is one network /O module
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for each host-network interface on the host. Depending on the support provided by the host-

network interface, some of the functionality of this module may be in hardware. Given the

library, the server, and the network /O module, applicati can i over the
network in a straightforward fashion. Applications call into the library using a suitable
interface to the transport protocol (e.g., the BSD socket). The library contacts the registry
server to negotiate names for the communication entities. In connection-oriented protocols
this might require the server to complete a connection establishment protocol with a remote
entity. Before returning to the library, the registry server contacts the network /O module
on behalf of the application to set up secure and efficient packet delivery and transmission

channels. The server then returns to the application library with un-forgeable tickets or

capabilities for these ct Is. Subseq network ication is handled completely
by the user-level library and the network /O module using the capabilities that the server
retumed. Thus, the server is bypassed in the common path of data transmission and

reception.
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