6.0 TPv6 implementation issues in the x-kernel

Chapter 6.0 IPv6 implementation issues in the x-kernel.

The main goal of this dissertation is to look at the issues involved in implementing
IPv6 into the x-kernel and its simulator. Generally the x-kernel plays the role of a test-bed
for testing various protocol combinations or to implement newly created protocols into the
existing protocol combinations, for an example the implementation of IPv6 in the TCP/IP
protocol stack. As stated before, the x-kernel implies minimal object oriented style in
implementing protocols, however if a new protocol is to be implemented in an existing set
of protocol layers, there has to be some significant changes to all protocol objects that are
related to this new protocol.

For this dissertation, the issues are focused on hosts connected either via an Ethernet
connection or a Point-to-Point connection. This type of implementation sets the proper
environment for doing network simulation in x-kernel’s simulator x-sim. The issues that
were focused on for the IPv6 implementation and its simulation are based on a network

configuration with the most minimal IPv6 specification of RFC2460. RFC2460 basically

gives the full specification or semantics with no consideration of the p

language or the type of platform used for impl ing IPv6 p Is [8]. As for the

issues of simulation, a configuration that only establishes a connection between two hosts
with the new IPv6 address architecture is proposed. This new address architecture will be
apparent in the simulation. Other capabilities such as routing, fragmentation and other
options that are specified in RFC2460 for IPv6 are not included in this review.

The x-kernel originally comes with the source code for IPv4 implementation. These
codes can be modified to meet the specific requirements of IPv6 [4]. Thus the issues in
implementing IPv6 will be based on these codes and its semantics. Before moving on to the

implementation issues, here is a table of main differences in IPv6 module as compared to
48




6.0 TPv6 implementation issues in the x-kernel

1Pv4. This table shows six columns that are identified as What, Subject, IPv4, IPv6,

S(Same), D(Different) and N(New). Table 6.1 describes the above.

What Subject IPv4 IPv6 S{D
variable fixed +
10 fields 6 fields +
2 address | 2 address +
fields. fields
Base checksum no check +
functionality Header format ToS flows +
Protocol Next  header +
type type
1P options extension +
headers
unicast unicast
Addressing broadcast multicast +
anycast
CIDR Providers +
Addressing and BGP-4 i’i;u) (BGP- +
routing Routing OSPF OSPF with
minimal +
changes
RIP RIP +
ICMP +IGMP ICMP +
Neighbor discovery | ARP+router Neighbor .
Plug and play discovery Discovery
L Auto no yes +

Table 6.1 Main differences between IPv4 as compared to IPv6 [6].

IPv6 header fields as compared to [Pv4 header fields have major differences; IPv6 header

fields and its description are listed in table 6.2:

49



6.0 TPv6 implementation issues in the x-kernel

Version number

6 (The new IP version)

Bastination address

Flow label Contents of the packet, priority
Payload length The number of octets in the payload field (data)
Next header The relative number to the next header (e. g. TCP, UDP)
Hop limit Lifetime of the respective packet
Source address Sender (TP Address)
Recipient (IP Address)

Table 6.2 IPv6 header field descriptions table.

6.1 The Protocol vs. the Operating System

There are normally three reasonable ways to add a protocol to an operating

system.

(i) Firstly, the protocol can be in a process that is provided by the operating

system.

(i)  Secondly, the protocol can be part of the kernel of the operating system

itself.

(iii)  Thirdly, the protocol can be put in a separate communications processor or

front-end machine.

This decision is strongly influenced by details of hardware architecture and

operating system  design; each of these three approaches has its own advantages and

disadvantages. The "process" is the abstraction which most operating systems use to
pra

provide the execution environment for user programs. A very simple path for

50



6.0 TPv6 implementation issues in the x-kernel

implementing a protocol is to obtain a process from the operating system and implement
the protocol to run in it

Superficially, this approach has a number of advantages. Since
modifications to the kernel are not required, the job can be done by someone who is not
an expert in the kernel structure. Since it is often impossible to find somebody who is
experienced both in the structure of the operating system and the structure of the protocol,
this path, from a management point of view, is often extremely appealing. Unfortunately,
putting a protocol in a process has a number of disadvantages, related to both structure
and performance.

First, as was discussed above, process scheduling can be a significant source of
real-time delay. There is not only the actual cost of going through the scheduler, but the
problem that the operating system may not have the right sort of priority tools to bring
the process into execution quickly whenever there is work to be done. Structurally, the
difficulty with putting a protocol in a process is that the protocol may be providing
services, for example support of data streams, which are normally obtained by going to
special kemel entry points. Depending on the generality of the operating system, it may

be impossible to take a program which is d to reading through a kernel entry

point, and redirect it so it is reading the data from a; process. The most extreme example of
this problem occurs when implementing server telnet. In almost all systems, the device
handler for the locally attached teletypes is located inside the kernel, and programs read
and write from their teletype by making kernel calls. If server telnet is implemented in a
process, it is then necessary to take the data streams provided by server telnet and
somehow get them back down inside the kernel so that they mimic the interface provided

by local teletypes. It is usually the case that special kemel modification is necessary

51



6.0 TPv6 implementation issues in the x-kernel

to achieve this structure, which somewhat defeats the benefit of having removed the
protocol from the kernel in the first place. Clearly, then, there are advantages to putting
the protocol package in the kemel. Structurally, it is reasonable to view the network as a
device, and device drivers are traditionally contained in the kernel. Presumably, the
problems associated with process scheduling can be sidestepped, at least to a certain
extent, by placing the code inside the kernel. And it is obviously easier to make the server
telnet channels mimic the local teletype channels if they are both realized in the same
level in the kernel.

However, implementation of protocols in the kernel has its own set of pitfalls.
Firstly, network protocols have a characteristic which is shared by almost no other device:
they require rather complex actions to be performed as a result of a timeout. The
problem with this requirement is that the kernel often has no facility by which a program
can be brought into execution as a result of the timer event. What is really needed, of
course, is a special sort of process inside the kernel. Most systems lack this
mechanism. Failing that, the only execution mechanism available is to run at interrupt

time. There are substantial drawbacks to implementing a protocol to run at interrupt time.

q

First, the actions performed may be h mplex and time ing p
to the maximum amount of time that the operating system is prepared to spend servicing an
interrupt. Problems can arise if interrupts are masked for too long. This is particularly

bad when running as a result of a clock interrupt, which can imply that the clock interrupt
is masked. Second, the environment provided by an interrupt handler is usually

q

extremely primitive p to the envi of a process. There are usually a

variety of system facilities which are unavailable while running in an interrupt handler.

52



6.0 TPv6 implementation issues in the x-kernel

The most important of these is the ability to suspend execution pending the
arrival of some event or message. It is a cardinal rule of almost every known operating
system that one must not invoke the scheduler while running in an interrupt handler.
Thus, the programmer who is forced to implement all or part of his protocol package as an

interrupt handler must be the best sort of expert in the operating system involved, and

must be prepared for develop it filled with obscure bugs which crash not
just the protocol package but the entire operating system.

A final problem with processing at interrupt time is that the system scheduler
has no control over the percentage of system time used by the protocol handler. If a large
number of packets arrive, from a foreign host that is either malfunctioning or fast, all of
the time may be spent in the interrupt handler, effectively killing the system. There are
other problems associated with putting protocols into an operating system kernel. The
simplest problem often encountered is that the kernel address space is simply too small to
hold the piece of code in question. This is a rather artificial sort of problem, but it is a
severe problem none the less in many machines. It is an appallingly unpleasant
experience to do an implementation with the knowledge that for every byte of new
feature put in one must find some other byte of ol;d feature to throw out. It is hopeless to
expect an effective and g’eneral implementation under this kind of constraint.

Another problem is that the protocol package, once it is thoroughly entwined in
the operating system, may need to be redone every time the operating system changes. If
the protocol and the operating system are not maintained by the same group, this makes
maintenance of the protocol package a perpetual headache. The third option for

protocol implementation is to take the protocol package and move it outside the

53



6.0 TPv6 implementation issues in the x-kernel

machine entirely, on to a separate processor dedicated to this kind of task. Such a
machine is often described as a communications processor or a front-end processor.

There are several advantages to this approach. First, the operating system on
the communications processor can be tailored for precisely this kind of task. This
makes the job of implementation much easier. Second, one does not need to redo the task
for every machine to which the protocol is to be added. It may be possible to reuse
the same front-end machine on different host computers. Since the task need not be done
as many times, one might hope that more attention could be paid to doing it right. Given a

careful 1 ion in an envi which is optimized for this kind of task, the

resulting package should turn out to be very efficient. Unfortunately, there are also

problems with this approach. More fund: lly, the icati p

approach does not completely sidestep any of the problems raised above. The reason is

that the communications processor, since it is a sep hine, must be hed to
the mainframe by some mechanism. Whatever that mechanism, code is required in the
mainframe to deal with it. It can be argued that the program to deal with the
communications processor is simpler than the program to implement the entire protocol
package. Even if that is so, the communications processor interface package is still a

protocol in nature, with all of the same structural problems.

1

a icati to a mainfr: host

There is a way of
which sidesteps all of the mainframe implementation problems, which is to use some
preexisting interface on the host machine as the port by which a communications
processor is attached. This strategy is often used as a last stage of desperation when the
software on the host computer is so intractable that it cannot be changed in any way.

Unfortunately, it is almost inevitably the case that all of the available interfaces are

54



6.0 TPv6 implementation issues in the x-kernel

totally unsuitable for this purpose, so the result is unsatisfactory at best. The most
common way in which this form of attachment occurs is when a network connection is
being used to mimic local teletypes. In this case, the front-end processor can be attached

to the mainframe by simply providing a number of wires out of the front-end processor,

each cor

ding to a c ion, which are plugged into teletype ports on the
mainframe computer. This strategy solves the immediate problem of providing remote
access to a host, but it is extremely inflexible. The channels being provided to the host
are restricted by the host software to one purpose only, remote login. It is impossible to
use them for any other purpose, such as file transfer or sending mail, so the host is
integrated into the network environment in an extremely limited and inflexible manner. If

this is the best that can be done, then it should be tolerated.

6.2Protocol Layering

The previous discussion suggested that there was a decision to be made as to
where a protocol ought to be implemented. In fact, the decision is much more
complicated than that, for the goal is not to implement a single protocol, but to implement

a whole family of protocol layers, starting with a device driver or local network driver at

11 + s

the bottom, then TP and TCP, and ly ing the application sp

protocol, such as Telnet, FTP and SMTP on the top.  Clearly, the bottommost of these
layers is somewhere within the kernel, since the physical device driver for the net is
almost inevitably located there. Equally clearly, the top layers of this package, which
provide the user his ability to perform the remote login function or to send mail, are not

entirely contained within the kernel. Thus, the_ question is not whether the protocol

55



6.0 TPv6 implementation issues in the x-kernel

family shall be inside or outside the kernel, but how it shall be sliced in two between that
part inside and that part outside.
Since protocols come nicely layered, an obvious proposal is that one of the layer

interfaces should be the point at which the inside and outside components are sliced apart.

Most sy have been impl din this way, and many have been made to work
quite effectively. One obvious place to slice is at the upper interface of TCP. Since
TCP provides a bi-directional byte stream, which is somewhat similar to the /O facility
provided by most operating systems, it is possible to make the interface to TCP almost
mimic the interface to other existing devices. Except in the matter of opening a
connection, and dealing with peculiar failures, the software using TCP need not know that
it is a network connection, rather than a local I/O stream that is providing the
communications function. This approach does put TCP inside the kernel, which raises all
the problems addressed above. It also raises the problem that the interface to the IP
layer can, if the programmer is not careful, become excessively buried inside the kernel.
It must be remembered that things other than TCP are expected to run on top of IP.

The IP interface must be made accessible, even if TCP sits on top of it inside the
kernel. Another obvious place to slice is above Tglnet The advantage of slicing above

Telnet is that it solves the problem of having remote login channels emulate local teletype

1 Is. The disad of putting Telnet into the kernel is that the amount of code

5

which has now been included there is getting remarkably large. In some early
implementations, the size of the network package, when one includes protocols at the
level of Telnet, rivals the size of the rest of the supervisor. This leads to vague feelings
that all is not right. Any attempt to slice through a lower layer boundary, for example

between internet and TCP, reveals one fundamental problem.

56



6.0 TPv6 implementation issues in the x-kernel

The TCP layer, as well as the IP layer, performs a demultiplexing function on
incoming datagrams. Until the TCP header has been examined, it is not possible to know
for which user the packet is ultimately destined. Therefore, if TCP, as a whole, is
moved outside the kemnel, it is necessary to create one separate process called the TCP
process, which performs the TCP multiplexing function, and probably all of the rest of
TCP processing as well. This means that incoming data destined for a user process
involves not just a scheduling of the user process, but scheduling the TCP process first.
This suggests an alternative structuring strategy which slices through the protocols,
not along an established layer boundary, but along a functional boundary having to do
with demultiplexing.

In this approach, certain parts of IP and certain parts of TCP are placed in the
kemnel. The amount of code placed there is sufficient so that when an incoming datagram
arrives, it is possible to know for which process that datagram is ultimately destined. The
datagram is then routed directly to the final process, where additional IP and TCP
processing is performed on it. This removes from the kernel any requirement for timer
based actions, since they can be done by the process provided by the user.  This
structure has the additional advantage of reducing the amount of code required in the

kernel, so that it is suitable for systems where kernel space is at a premium.

6.3 The TPv6 module issues

Further discussion on the IPv6 module will be based on the x-kernel simulator x-
sim. The x-sim shares the same implementation environment as the x-kernel. Most of the
files in the IPv4 module implementation can be used to implement the new IPv6, but some

of the files may need modifications to fit the requi of IPv6 specification [4]. The
57

PEREUSTAKAAN UNIVERSITI MALAYA



6.0 TPv6 implementation issues in the x-kernel

1Pv4 module contains a set of *.c and *./ extension files which are the source code for IPv4
implementation in the x-kernel. The following review will first look at the existing IPv4
module in the x-kernel then a review on the proposed IPv6 module based on the latter

module. Finally issues on the proposed simulation configuration of IPv6.

6.3.1 The IPv4 module

The main file in IPv4 module implementation that needs to be modified is the ip.c file.
A complete listing of ip.c program file is in Appendix C. This file is where protocol objects
and session objects are utilized by the program codes. In this file the main application for x-
kernel’s UPI coding takes place in terms of session object and protocol object
implementation. In this file there are twenty-three routines or functions that represent the x-
kemel’s IP protocol layer. This program file basically initializes and prepares the [Pv4
protocol objects and session objects for communication. The C codes in this file can be

extended to satisfy the TPv6 impl ions with minimal but significant changes. For the

IPv4 protocol, its module is contained in the directory /usr/xkernel/simulator/protocol/ip.
The C functions that implement a given protocol can be distributed across multiple *.c files

as shown in the list below. The list of files in this, directory for the [Pv4 module are listed

below: .
- ipc - ip_ih - iproute.c
- ip_control.c - ip_input.c - route.h
- ip_fragc - ip_mask.c - route_ih
- ip _gec - ip_rom.c
- ip_hdrc - ip_util.c

58



6.0 TPv6 implementation issues in the x-kernel

In this directory there are also script files for compiling purposes and the object files
for execution, which are not shown in the list above. The other files that are related to this
modules are the header files, these files are usually in /xkernel/include/prot directory. The
files that are related with the IPv4 module are listed below.

- iph
- ip_host.h
- ipsec.h
The figure below depicts main IPv4 module and its relationship between *c files

and *. files based on the source code

ip_mask.c I ip_rom.c l ip_util.c iproute.c Pvé
Module

route.h ‘ route_ih I ip.c I ip_ih [ ip_hdr.c

4

xkernel.h I gch—l ip.h route.h l ip_i.h I arp.h ]
1 upih I ip_hosth ;I iph l vneth
3
xkemelh l voet_ih l aph 1 iph l

— : Include files

Figure 6.1 The relationship between header files and ip.c file in IPv4 module

59



6.0 TPv6 implementation issues in the x-kernel

6.3.2 The proposed IPv6 module

Adding TPv6 capability suggests modifying code to work specifically by adding
IPv6 capability while retaining IPv4 functionality. When adding IPv6 functionality, it is
necessary to define properly sized data structures. The size of an IPv6 address is much
larger than an IPv4 address. Structures that are hard-coded to handle the size of an IPv4
address when storing an TP address will cause problems and must be modified [15]. Based
on the C programming language definition; a structure is a collection of one or more
variables, possibly of different types, grouped together under a single name for convenient
handling [11].

The following listing describes the main points of the proposed TPv6 module:

(6)) For the implementation of IPv6 module in the x-kernel, first a directory

has to be created to save all the necessary files for the build and

compiling process. The new directory can be named as ip6 and it shall be

in the /usr/xkernel/simulator/protocol directory for simulation purposes.
The ip6 directory shall contain all the new files for the IPv6
implementation.

(ii) The suitable name for the IPv6’s implementation in the x-kernel or x-sim
will be jp6.c. Further discussion on the proposed issues ip6.c will be
based on the ip.c file of IPv4 module.

(a) As from the ip.c file, in it’s coding the createLocalSessn( ) routine plays
the function of filling in the session template header with information of
TPv4’s header fields. Since TPv6 has no header length field, hence this

part of the program has to be modified [8].

60



6.0 TPv6 implementation issues in the x-kernel

(b) In the ipSend( ) routine, for this implementation, as proposed, no
fragmentation is considered in IPv6. Thus in this routine all

fr: ion part of ge is discarded for this implementation. Also

in this routine the Adrlen variable has to be changed to payloadLength as
specified in the IPv6 specification.

(c) In the ipPath( ) routine the macro GET HLEN(&hdr) * 4 has to be
removed for the IPv6 implementation. As in the IPv6 specification,
multicast replaces the broadcast capability of IPv4, so the
fwdBcastSessn( ) routine has to be replaced with a new routine
fwdMecastSessn() function.

(dIn the ipCreatePassiveSessn( ) routine the macro’s
BCAST SUBNET ADDR_C and BCAST LOCAL_ADDR _C needs to be
changed to the multicast capabilities of LPv6.

(e) The routines ipRouteChanged( ) and routeChangeFilter( ) implements
the routing aspects for IPv4, these routines also needs to be changed for
IPv6, but as for this dissertation it is not taken into consideration because
no routing is proposed into the x;kemels simulation.

The main contributors to the ch: of IPv6 impl ion lie in the IPv4 header

files. There are six header files that in ip.c file these files are listed below.

- ipih - iph
- xkernel.h - arph
- geh - route.h

61



6.0 TPv6 implementation issues in the x-kernel

(i) From the ip_ih file, the ip hosth file is included, and it is this file, which
determines the iphost structure for IPv4. This structure basically shows the 32-bit
address architecture.

typedef struct iphost{
u_char a, b, ¢, d;
HPhost;
To implement IPv6, the structure above needs to change its structure members to
accommodate IPv6’s 128-bit address architecture. The proposed iphost6 structure:
typedef struct iphost6{
u_int a, b cdef g h
JHPhost6;
This file can be renamed to ip_host6.h, with all of the macros in this file also has to

be changed and modified to comply with its structure changes.

(ii) Moving on to the next header file, which relates to this discussion is the ip.h header

file. This header file includes its own header file, which is the ip_host.h file, also

ubsequently requires ch for 1Pv6. Again the routing aspects in this file are
neglected at this ’time. The structure block ipsseudohdr in ip.h file needs
restructuring for IPv6 and is shown below. The ipsseudhodr structure below
belongs to IPv4 module. Following this structure block is the proposed structure

block for IPv6 and named as ippseudohdré.

62



6.0 TPv6 implementation issues in the x-kernel

typedef struct ippseudohdr {
IPhost src;
1Phost dst;
u_char zero;
u_char prot;
u_short len;
} IPpseudohdr;
The proposed /Ppseudohdr6 structure for ip6.h is shown below.
typedef struct ippseudohdr6 {
IPhost6 sre;
Iphos6t dst;
u_char zero;
u_char n_header;
u_short payload;
} IPpseudohdr6;
The macros in this file which are /P_LOCAL BCAST has to be changed to
IP_LOCAL_MCAST and IP_ADS BC CASI(4) to IP_ADS MCASI(4) with its

respective definition for IPv6 implementation.

(iii)The next header file, which is also included in the ip.c file, is the ip ik file. This
header file is one of the most important files in defining the IP header fields. So it is
necessary that all files in the new IPv6 module comply and change accordingly

based on this file. This file can be renamed as ip i6.h to suit IPv6. All the header

files in jp.c file shall be d dingly to indicate that it is a new file related

63



6.0 TPv6 implementation issues in the x-kernel

with IPv6 module. The ip.h and vnet.h files renamed and modified as ip6.h and
vnel6.h respectively. The vnet.h file is for the simulation purposes. Thus the arp.h
file is not needed for simulation and IPv6 uses neighbor discovery instead. In fact
the ARP module is discarded totally in the IPv6 protocol specification. The
important changes in this file is to remove all macros related to IPHLEN,
HLEN_MASK, VERS_MASK and the changing of GET_VERS(h) relative to IPvé
module. All macros related to fragmentation and routing is also removed. Looking
at the main structure that defines the IPv4 header fields is defined in this file, and it
is the /Pheader structure. The proposed structure for IPv6, named as /Pheader6
structure is described below.
typedef struct ipheader6{

u_char vers;

u_char prio;

u_char flow;

u short payload;

u_short n_header;

u_char h_lim;

1Phost6 source;

IPhost6 dest;

} IPheader6;

(iv)All the structures and type definitions that use the proposed IPv6 headers need to be

modified simultaneously in this module. All structures and routines in this file that

relates to fragmentation and routing can be dropped for this imp

64



6.0 TPv6 implementation issues in the x-kernel

(v) As for the other files that are included in the ip.c file; arp.h header file is completely
dropped in IPv6, route.h is also not considered for this proposed implementation,
header files such as xkernel.h and upi.h remains unchanged. Generally these are the
structures and header files in ip.c that needs to be changed for the new IPv6 module.
For the proposed IPv6 module implementation, all structures, macros, routines and
type definitions need to be consistent throughout the whole ip6.c file and to all other

files that are linked to it.

These are main points to look for in the ip.c file to be modified into ip6.c for the
IPv6 module. This set of changes needs to be consistent towards all *.c files in the

xkernel/simulator/protocol/ip6 directory for the new ip6 di y. For this i
the files listed below are the ones that needs to be considered for modification for newly
proposed IPv6 module. These files need to be renamed accordingly for IPv6 module.

- ip_control.c

- ip gec

- ip_hdr.c

- ip input.c

- ip_rom.c

- ip util.c

6.4 IPv6 simulation and configuration issues

The new 1Pv6 module can be easily simulated using the x-kernel’s simulator x-sim.

This simulator can be configured to just simulate two hosts connected to each other via

either an Ethemet or a Point-to-Point connection. Basically in this dissertation, the
65




6.0 TPv6 implementation issues in the x-kernel

simulator is mainly used to show that the new protocol module with its new address

o

can be impl d and tested upon. The new module is to be said operational

when there is connection between two virtual hosts. The figure 6.2 show a screen shot of a

successful host-to-host simulation in a Linux operating system.

[root@localhost xkernell# cd sinulator
[root@localhost simulatorl# cd 1inux
bash; linux;: No such file or directory

[root@localhost simulator]® cd build

(root@localhost buildlé cd 1inux
|troot@localhost 1inuxI# ,/xsim
Using seed: 1007971971
[rtcp-hini] Using TCP tiner delay of: 97000, 10000
[rtcp=honi] Using TCP timer delay of: 137000, 346000
(hird.] meg tining test

[hini] megtest: I am neither server nor client
[h2n1] meg timing test
[h2n1) megtest: I am neither server nor client
#xwun User Termination (Ctrl-C)
xkerne] abort: werss End of test wewss

memnm Rajal¥ cd Jusr/kernel

||troot@localhost 11nuxie ]

Figure 6.2 A screen shot of [Pv4 simulation in progress between two hosts on an Ethernet

This simulator is the safest way to test the new protocols in the user-level before
moving the protocol into the x-kernel itself. Further enhancements and changes can be
made to the new protocols in the simulator in a much easier and faster way. Other wise, it is
not easy compiling and initializing new protocols;into an operating system [5]. To test a
new protocol in the opemt’ing system kernel, it is required to reboot the system each time
there is a change made.

Looking at an example from the IPv4 module implementation in the x-sim. All
modules that is needed for this simulation is readily available when the whole software was
downloaded from the author’s website. These tools can be used to emulate the required

simulation by configuring the necessary files to suit the users requirements. The figure

66



6.0 TPv6 implementation issues in the x-kernel

below shows the x-sim protocol graph of two virtual hosts and its protocol layers connected
by a SIM layer, which represents the connection layer or internetwork. In this context the

issues related for the IPv6 simulation is based on the IP layer.

Host

Figure 6.3 Two virtual hosts in a simulation at user-level

Figure 6.3 above shows a protocol graph representing two simulated hosts
connected by an internetwork. Protocol layer S/M contains code that implements the entire
internetwork to which the hosts are attached. In the x-sim, its own protocol stack
implements each simulated host, this leads to multiple instantiations of protocols objects,

and a large graph.

67



6.0 TPv6 implementation issues in the x-kernel

In a user-level x-kemnel, the protocol graph is static and it is specified at compile

time in the graph.comp file. In contrast, the simul has been enh d so that the

protocol graph is created at runtime, allowing different simulations to be run without
recompiling. The graph.comp file is still used by x-sim, but only as a means of specifying
which protocol modules to include in the executable. In other words, if any simulated host
is going to be running P, then protocol P must appear somewhere in graph.comp. The

relationships between p specified in graph.comp are ignored by the simulator.

At runtime, x-sim reads a configuration file, called xsim.data, or any other file that
can be specified by the —simfile option, which specifies the network topology: the number
and types of networks; the number of hosts and routers; how the networks, host and routers
are connected; the protocol graph for each host; and various other parameters such as the
addresses of each host and network, the speed and delay of each Point-to-point link and
network, whether Ethernet networks should simulate collisions, and so on. However for the
IPv6 simulation issues, parameters such as speed and delay of a Point-to-Point link and
network, Ethernet networks with simulated collision and so on is neglected for the time
being.

Basically, building the protocol graph fgr a simulation involves two stages:

including the VP 1 modules in the simul bles (via graph.comp)

and specifying at runtime the protocol graphs for the individual simulated hosts(via
xsim.data).

As for the new 1Pv6 module, a series of new modules, which is related to, the latter
module need to be introduced in the x-sim. This new modules replaces all protocols that are
related to the [Pv6 module. For the IPv6 layer, some of the IPv4 are modified or removed

and new modules added, as to have a full working protocol simulation for IPv6. However

68



6.0 TPv6 implementation issues in the x-kernel

in this context, the issues that was considered was only the IP module or layer from the
whole stack of the figure 6.3.

As shown in figure 6.1, the protocol modules that need to be changed are listed in
the example graph.comp file as shown below. The configuration file xsim.data is also

needed to be modified for IPv6. An example of this file is also shown below. These files

illustrate the basic ion requi of two isolated hosts.
The proposed graph.comp file for IPv6 simulation:

@;

name=sim,;

name=ethd;

name=eth;

name=vnet6;

name=ip6;

name=ricp6;

name=megtest6;

@

prottbl=prottbl.default;

prottbl=prottbl.xsim;

69



6.0 TPv6 implementation issues in the x-kernel

The proposed xsim.data file for IPv6 simulation:
sel ip6 = ipG, ip6 vnelG, vnelG eth, eth ethd, ethd sim;
set buf = 50;
set db = db.out;
set delay = 10ms;
sel meglime = 50;
set time = 50;
set rbuf = 15;
# Define hosts
host hinl;
protocols = megtest6 rtcp6, ricp6 Sip6;
args = -c2FFF:80::94:1 buf = $buf -tcpTrace=2000
-db=3db —delay=3delay -meglime = $meglime;
host h2nl;
protocols = megtest6 rtcp6, rtcp6 $ip6;
args = -c2FFF:80::94:2 buf = $buf -tcpTrace=2000
-db=$db —delay=3delay -meglime = $meg{ ime;
# Define network, cqnneclr’vily
net ETH 2FFF:80::94:0;
connections = hinl 2FFF:80::94:1, h2nl 2FFF:80::94:2;

args = rate =200KB, delay = 10ms;

70



6.0 TPv6 implementation issues in the x-kernel

6.5 Summary

Finally, as to summarize this chapter, the proposed TPv6 module covers the main
issues in implementing IPv6 in the x-kernel. The focus is on the existing ip.c file of IPv4
module and its capability to be modified for IPv6. After looking at the main issues of the
IPv6 source code, the main factors for a simulation of IPV6 in the x-sim are also considered.
The proposed simulator configurations are based on the proposed TPv6 module and other
associated protocols in-lieu of the protocol stack in figure 6.3. This proposed simulation
shows that this implementation is capable for the simplest virtual host-to-host connection of

new IPv6 address architecture.

71



