Chapter 2 Literature Review

2.1 Introduction to Literature Review

A literature review is a piece of discursive prose and it uses as its database reports of
primary or original scholarship, and does not report new primary scholarship itself.

The primary reports used in the literature may be verbal, but in the vast majority of
cases reports are written documents. The types of scholarship may be empirical,
theoretical, critical and analytic, or methodological in nature. A literature review seeks
to describe, summarize, evaluate, clarify and or integrate the content of primary reports.
Literature Review is an essential part of the whole project. In other word we can say
that, it is the backbone of the whole project by devising steps and mechanism to
approach the review in a systematic and rigorous way. The main purpose of the
literature review is to address the scope, objective and to focus on the project’s research
domain by performing research and survey to determine and discover the best method
required to meet the project’s objectives and at the same time making the project a

success.

This chapter basically addresses all the common questions asked during development
of a project such as:

e What are we trying to achieve in this project?

e How are we going to achieve this? -

. Why we need to do this way and not the other way around?

By asking the stated questions at the beginning of the project, we are actually striving
to achieve the objective and ensuring we are on the right track. The basic key steps

involved in undertaking a literature review that should be followed in sequence are:

e Clarification of the purpose of the literature review in the form of a rationale
statement

o Planning the review through drawing up a blueprint document

e Conducting a comprehensive literature search, according to the blueprint

e Selection and focused of reviewing of individual items, according to the blueprint,
creating a set of individual reviews

o Integrated or ‘synthesis’ reviewing according to the blueprint, to produce the review

document.

Specifically to this project, this chapter allows to gather the essential and imperative

information needed for the development of the tutorial system for C in rule based

system architecture. The review of the project actually divided into five main parts:

o General overview of the rule based expert system

e Research on C programming topics, which can be applied rule-based system
architecture

o Surveys of existing system and comparison with the new system intended to be
developed

e Questionnaire design to get feedback from the students on how it need to be
designed

o Overview of the technologies available to ease the development of the system «

Source of research varies such as books, questionnaire analysis, existing knowledge
based systems, tutorial systems and online articles. Later sections are undoubtedly the

outputs of the five key steps mentioned above.

2.2 Introduction to Artificial Intelligence
Artificial Itelligence is a branch of science which deals with helping machines to find

solutions to complex problem in a more human-like fashion. There are five branches of

-

Al such as robotics, vision, natural I under sound r and

knowledge system [2].

Robotics is the study of machines to perform many human-like tasks such as
mechanical manipulation and how to make them function with some "intelligence" and
autonomy. Robotics is proving to be very valuable to the manufacturing industry. There

are robotic automobile painters and assembly line workers.

Vision systems are those that successfully interpret two- and three-dimensional pictures

Leained t 1
&

from a two-di ional image sensors. This involves

processing the image, classifying it and then interpreting the scene.

Natural 1 is human 1 Natural | und: ding is the ability to
communicate with a p by conventional language text, such as English and
Russian instead of a highly structured 1 such as dard query | (SQL).

Sound recognition is the field that the goal is to enable machines to listen and
understand their auditory environment in which processing and reasoning about
acoustic sensors such as alarms, spoken words, or automobile engines takes place.

Sound recognition systems take an audible sound and make it readable.

Knowledge systems or expert system are software systems that have structured

knowledge about a field of expertise. They are able to solve some problems within their

10

domain by using knowledge derived from experts in the field. This approach

emphasizes data interpretation.

2.2.1 Expert System or Knowledge System

The area of knowledge systems has blossomed over the past decade from merely an
academic interest into a useful technology. Expert system is one of the most popular
and feasible facets of Artificial Intelligence. The most fitting definition of expert
system itself is ‘@ computer program that represents and reasons with knowledge of
some specialists subject with a view to solve problems or to give advice’ [6].One of the
ways to categorize the application of expert system is a problem-solving paradigm.
Experts perform a generic set of tasks when solving certain types of problem such as
diagnosis or planning. Regardless of the application area, given the type of problem, the
expert collects and reasons with information in similar ways. Expert systems likewise

are designed to accomplish generic tasks on the basis of problem type.

It’s a software system that has structured knowledge about a field of expertise. It’s able
to solve some problems within their domain by using know]edge derived from experts
in the field. Development of the methods for knowledge representation followed the
knowledge acquisition phase. With a suitable amount of knowledge gathered, the

structure and representation method for the knowledge system can be described.

2.2.2 The structure of an expert system

The Table 2.1 describes the main structure of an expert'system.

Table 2.1: The main structure of expert system

Structure

Description

Knowledge Base

Maintain the expert domain knowledge in a module.
Knowledge obtained from the expert is coded here using one of
the several knowledge rep ion

Working memory

Contain the facts about a problem that are discovered during
consultation or inferred by the system.

Inference Engine

Processor to compare and match the facts contained in the
working memory with the domain knowledge contained in the
knowledge base to conclude the problem.

Explanation Facility | Provides an explanation to the user about why it is asking a

question and how it reached some conclusion.

The Figure 2.1 depicts human being’s problem solving method. Based on the domain

knowledge stored in the long term memory and inferred facts obtained from the short

term memory, human could reason a problem and make a conclusion.

Long Term Memory

Domain Knowledge Advise
Reasoning Case Facts
Conclusion
Short Term Memory

Case/Inferred Facts

Figure 2.1: Human Expert Problem Solving

Expert system’s goal is to enable many people to benefit the knowledge of one person

which is the expert. There are two traits of an expert that are attempted to model an

expert system which are the expert’s knowledge and reasoning. The system must have

two principles modules such as a knowledge base and an inference engine to

accomplish this. The knowledge base contains highly specialized knowledge on the

problem area as provided by the expert. It includes problem facts, rules, concepts and

relationship. The inference engine is the knowledge processor, which works as the

12

reasoning in the human expert problem solving. The knowledge gained through

consultation about a problem is stored in the working memory.

-—
Knowledge Base l User
Domain Knowledge Inference Case Facts
Engine Conclusion

Working Memory <——T

Case/Inferred Facts

Figure 2.2: Expert System Problem Solving

2.2.3 What is Rule-Based System?

Rule-based system represents problem-solving knowledge as IF_THEN rules. It is one
of the oldest techniques for representing domain knowledge in an expert system. It is
also one of the most natural and widely used in practical and experimental expert
system. Other than the four basic components of an expert system discussed earlier, a

rule-based expert system also consists of the following modules:

o User Interface: It is the vehicle through which a user views and interacts with
the system.

o [External Program: External program are programs such as spreadsheets and

algorithms that work in support for the system.

2.2.3.1 Rule-Based System Architecture

Rule Based System Architecture

User Inference Knowledge
Interface Engine Base

Figure 2.3: Rule Based System Architecture

The above figure shows three major elements of the rule based system architecture,
which are the user interface, inference engine and knowledge base. This is the runtime
architecture. The user starts the system and interacts with it via the user interface. The
engine is the part of the program that actually does stuff. It says, run the system, that is,
look at working memory, see what rules fire, and apply them. Actually, same inference
engine applies for each rule base. The knowledge base is the rules and the working
memory. The rules will remain the same for different runs. Working memory (WM)
changes for each run and during the run. Basically working memory is the database, the
medium to store the information derived from the system when or during the system

run.

The knowledge base consists of rules and working rﬁcmory (WM). Rules are if and
then statements. On the If side there will be conditional expressions as (X is green). At

the same time, we can have variables in here, in this case X is a variable and on the

14

Then side, usually have assignments that are set or modify working memory items.

Below are some rules:

o if (X is green) and (X is a fruit) then (X is a Watermelon)

o if(Xisred) and (X is a fruit) then (X is an Apple)
A real time example:

o if (Arithmetic Type EQ Multiplication) and (Variable Type EQ
Integer) and (Variable A Value EQ A) and (Variable B Value EQ B)
Then (int a, b, ans; a=A, b=B, ans =A*B; printf (“%d\n”,ans) and

Result = A*B;)

2.2.3.2 Inference Mechanisms or Techniques

Expert systems model the reasoning process of humans using technique called
inference, which derives new information from known information. In rule-based
systems, knowledge is represented as facts about the world and rules to manipulate the
facts. At any one time more than one rule may be applied to solve a problem and when
each rule is applied other rules may applicable to those rules. Therefore, a rule-based
system needs a control structure to decide which rule should be applied first or next and
which rules are put together. The two basic inference techniques used in an expert
system are forward and backward-chaining. Both techniques are compared to determine

the best inference strategy to be adopted into the CTutorial4u project.

Forward-chaining is an inference strategy where conclusions are drawn by first
looking at the facts or data on the problem. This style of reasoning is also known as
data-driven search. In a rule-based system, forward chaining begins by asserting certain

15

facts, seeing what rules can fire based on these assertions, picking a rule to fire, then
cycles and checks the rules again looking for new matches. This process is continued

until a goal is reached or no additional rules can fire.

Backward-chaining is an inference strategy that attempts to prove a hypothesis by
gathering supporting information. In a rule-based system, backward chaining begins
with a goal and tries to prove it to be true by proving the premises of a rule that
contains the goal as its conclusion. The premises of this rule are considered ‘sub goals’,
which the system tries to prove, is true by pursuing other rules that contain the sub
goals as conclusions. Eventually, this backward chaining sequence reaches premises
that are not supported by other rules and the user is then asked to verify the truth of the

premise statement. This type of inference strategy is also called goal-driven search.

In forward chaining, the inferences would be made in the order indicated by the
numbers on left flow. Forward chaining uses the depth of the tree structure of
condition-action relation. If F was true and a solution before it is inferred that E is true,
it may not need to infer that E is true. This forward chaining is used to infer new facts
from existing facts. It is also possible to use the same set of rules in reverse to
determine what needs to be true for a premise to be true. This method is called
backward chaining. Backward chaining is commonly used in rule-based expert systems
to enable a hypothesis to be tested and this problem-solving strategy is often referred to

as generate and test.

Given an assertion, it is expected that both the assertion and the conclusion are valid

throughout the session.

16

Forward Backward

chaining chaining
IFATHENB & C o @
IF B THEN D o
IF CTHEN E
IF D THEN F @

SA0AC
020

Figure 2.4: Forward and backward chaining

Monotonic reasoning is when a system retains its facts as unchanged assertions. It is
more appropriate to be used for a diagnostics and prescription tasks. Non-monotonic
reasoning is a method of reasoning that allows for changes in a given fact. Non-
monotonic reasoning is an impertant feature of expert system applied to planning or

design tasks.

2.3 Introduction to C Progr

The C programming was developed by Dennis Ritchie at Bell Laboratories in the early
1970s as a system implementation language. From then till now it has evolved into a
general-purpose language that combines the convenience of high level languages with
the power of assembly language. Currently, standard C compilers are available for
many microcomputers, mini computer systems and mainframes. C is becoming
increasingly more popular in a variety of computer abplications. The language has
many powerful features and it is possible to develop portable programs in it and at the

same time it is to master and when coupled with good program design techniques it can

17

be used to generate programs that are well-structured, easy to read and easy to
maintain. The C language facilitates a structured and disciplined approach to computer

program design.

2.3.1 Basic Structure and Data Types
In general, a C program consists of the following components:
e Function-main()
e Program comments
e Preprocessor directives
e Data Type declarations

e Variables

Function —main()

Each C program must have one main function. The function main in a program marks
the entry point of a program. The opening and closing parentheses () indicate that the
identifier is a function. The opening and closing braces {} define the body of the
function. The format is

main (){

statements

Program Comments
Comments are text statements that document and describe the program. Comments are

optional, non-executable statements that are placed in the program to explain what the

program does and how the code works. (The computer does not process non-executable
statements.) A comment begins with /* and ends with */. The example is as below:

/* A comment may be coded like this */

Preprocessor Directives

A preprocessor directive, also called a compiler directive is an instruction to the
preprocessor. The #include preprocessing directive tells the preprocessor to replace the
directive with a copy of the file specified by the filename argument within angel
brackets <>. The preprocessing directive instructs the preprocessor to modify the
source code program. The example is:

include <stdio.h>

According to the example above a copy of the standard input/output header file
replaces the directive in the source code. The stdio.h header file enables the program to

perform basic input and output operations.

Data Types

Data types stipulates (in what format) the data is stored in memory. In C language, built
in data types are classified as fundamental data types and derived data types.
Fundamental data types correspond to the most common, fundamental units of a
computer and the most common, fundamental ways of using such data. Although C

allows other types, these are the only ones commonly being used.

e int ~to declare numeric program variables of integer types and restricted to
whole number such as 5, 16 and 78. Integer variables hold data in the range —
32768 to 32767. If it is beyond or less than the above value then the number is

declared using long data type.
19

e float- to declare real or floating point numbers have decimal points such as
2.6571,74.9 and 567.89.

e char- to declare character variables such as single letter, numeric digit,
punctuation mark or special symbol. If more than one character, then we define

that as string.

Variables

A variable is a data item that may assume different values. Example of how to declare
variable is shown below:

int grade;

int final;

The variable grade and final are declared as integers (int). A global variable is declared
outside of main and is available to the whole program. A local variable on the other
hand is declared inside a specific program function and is not available to any other

function.

2.3.2 Topics in C Programming

C programming covers a variety of topics such as arithmetic, control structures,
counters, functions, arrays, pointers and file processing. After a thorough analysis of all
the topics in C, the above mentioned topics are the topics that will be discussed in

detailed in this chapter.

20

2.3.2.1 Arithmetic
Arithmetic in C is regarding numeric data types and arithmetic calculations. Arithmetic
expressions are performed using arithmetic operators. They are (+) for addition, (-) for

subtraction, (*) for multiplication, (/) for division and (%) for remainder or modulus.

2.3.2.1.1 Application of rules to teach arithmetic

Based on the literature review, topic arithmetic can be easily taught to the student in by
applying rule based system architecture. Based on the question and answer from the
system the solution or code for the arithmetic selected is shown or given for the user’s
view. Figure 2.5 shows the arithmetic for multiplication type which selects the proper
code based on the algorithm in the next page. Table 2.2 defines the rules for all the

arithmetic types and the algorithm is the same for all arithmetic type.

Q: Problem Algorithm

A: Arithmetic If Problem is Arithmetic

Q: Types of Arithmetic Then many types of Arithmetic

A: Multiplication If type is Mul_tiplication

Q: Variable type? Then many types of variable type
A: Integer If variable type is integer

Q: Values of variable A and B Then value of the variables
A:AisAandBis B If Value A is A and B is B

Then choose Code for
Arithmetic to multiple integer A

& integer B

Search algorithm for
arithmetic

Problem =
multiplication

Variable type
= Integer?

Value variable
A=A&

Value variable
B=B

Code for Arithmetic to
multiply integer A &
integer B

| Addition / Subtraction
/ Division / Average

Multiplication/

Integer/ Floating
| point/ Double

Code for the selected
choices

Figure 2.5: Flowchart to teach Arithmetic (multiplication)

22

Table 2.2: IF-THEN rules for Arithmetic

If (Question & Answer)

Then (Code)

Arithmetic Type EQ Multiplication AND Variable Type EQ
Integer AND Variable A Value EQ A AND Variable B Value
EQB

int a, b, ans;
a= A, a=B, ans = A*B;
Printf (“%d\n",ans);

Arithmetic Type EQ Division AND Variable Type EQ Integer
AND Variable A Value EQ A AND Variable B Value EQ B

inta, b, ans;
a= A, b=B, ans = A/B;
Printf (“%d\n”,ans);

Arithmetic Type EQ Addition AND Variable Type EQ Integer
AND Variable A Value EQ A AND Variable B Value EQ B

int a, b, ans;
a= A, b=B, ans = A+B;
Printf (“%d\n”,ans);

Arithmetic Type EQ Subtraction, AND Variable Type EQ
Integer AND Variable A Value EQ A AND Variable B Value
EQB

inta, b, ans;
a= A, b=B, ans = A-B;
Printf (“%d\n”,ans);

Arithmetic Type EQ Average AND Variable Type EQ Integer

int a, b, ans;

AND Variable A Value EQ A AND Variable B Value EQ B a= A, b=B, ans =
((A+B)12);
Printf (“%d\n”,ans);
Arithmetic Type EQ Multiplication AND Variable Type EQ float a, b, ans;

Floating point AND Variable A Value EQ A AND Variable B
Value EQ B

a= A, b=B, ans = A*B;
Printf (“%f\n” ans);

Arithmetic Type EQ Division AND Variable Type EQ Integer
AND Variable A Value EQ A AND Variable B Value EQ B

float a, b, ans;
a= A, b=B, ans = A/B;
Printf (“%f\n”,ans);

Arithmetic Type EQ Addition AND Variable Type EQ Integer
AND Variable A Value EQ A AND Variable B Value EQ B

float a, b, ans;
a= A, a=B, ans = A+B;
Printf (“%f\n”,ans);

Arithmetic Type EQ Subtraction AND Variable Type EQ
Integer AND Variable A Value EQ A AND Variable B Value
EQB

float a, b, ans;
a= A, a=B, ans = A-B;
Printf (“%f\n”,ans);

Arithmetic Type EQ Average AND Variable Type EQ Integer
AND Variable A Value EQ A AND Variable B Value EQ B

float a, b, ans;

a= A, b=B, ans =
(A+B)12);

Printf (“%f\n”,ans);

Arithmetic Type EQ Multiplication AND Variable Type EQ
Double AND Variable A Value EQ A AND Variable B Value
EQB

double a, b, ans;
a= A, b=B, ans = A*B;
Printf (“%1f\n” ans);

Arithmetic Type EQ Division AND Variable Type EQ Double
AND Variable A Value EQ A AND Variable B Value EQ B

double a, b, ans;
a= A, b=B, ans = A/B;
Printf (“%1f\n” ans);

Arithmetic Type EQ Addition AND Variable Type EQ Double
AND Variable A Value EQ A AND Variable B Value EQ B

double a, b, ans;
a= A, b=B, ans = A+B;
Printf (“%]1f\n”,ans);

Arithmetic Type EQ Subtraction AND Variable Type EQ
Double AND Variable A Value EQ A AND Variable B Value
EQB

double a, b, ans;
a= A, b=B, ans = A-B;
Printf (“%1f\n",ans);

Arithmetic Type EQ Average AND Variable Type EQ Double
AND Variable A Value EQ A AND Variable B Value EQ B

double a, b, ans;

a= A, b=B, ans =
(A+B)/2);

Printf (“%1f\n",ans);

23

2.3.2.2 Control Structures

C has seven control structures all together, namely sequence, three types of selection
structure and three types of repetition. The three types of selection structures are if,
if/else and switch structure. The if structure is called a single-selection structure
because it selects or ignores a single action where it either performs or selects an action
if a condition is true or skips the action if the condition is false. On contrary, the if/else
selection structure performs an action if a condition is true and performs a different
action if the condition is false. The switch selection structure performs one of many

different actions depending on the value of the expression.

At the same time, C also provides three types of repetition structure such as while,
do/while and for. The while repetition structure allow us to specify that an action is to
be repeated while some condition remains true whereas the do/while repetition
structure tests the loop continuation condition after the loop body is performed
therefore the loop body will be executed at least once. The for loop is to set up a
counter-controlled loop. The for statement repeats the statement in the loop a given

number of times where the statement body executes as long as the condition test is true.

If Structure
Purpose: To set up one-way conditional branch.
if (credits<45){

printf (“Welcome freshman”);

}
If/Else Structure

24

Purpose: To set up a two-way conditional branch
if (credits <45) {
printf (“Welcome freshman”);}
else {
printf (“Welcome upperclassman”);

}

Switch Structure
Purpose: To set up a multi-path conditional path. The switch structure allows the
program to select one option from a given set of options.
int choice;
printf (* Enter your choice...\n");
printf (“Movie menu: 1-Action, 2-Comedy, 3-Drama \n”);
Switch (choice) {
case 1:
printf (“Action movie fan\n);
break;
case 2:
printf (“Comedy movie fan\n”); “
break;
default:
printf (“Invalid choice\n”™);

break;}

While Structure
Purpose: To print numbers from 1 to 10.
main ()
{
int counter = 1;
while (counter <= 10) {
printf (“%d\n”, counter):
++counter; }
return 0;
}

Do While Structure

Purpose: To print the numbers from 1 to 10.

main() {
int counter = 1;
do {
printf (“%d ”, counter);
}
while (++counter <= 10);

return 0;

26

For Structure
Purpose: To print the numbers from 1 to 10.
main()
{
int counter;
for (counter = 1; counter <= 10; counter++)
printf (‘%d\n”, countr);

return 0;}

2.3.2.2.1 Application of rules to teach control structures

Based on the analysis, control structures can be taught to the student in an easier way if
we apply rule based system architecture. Based on the question and answer from the
system the control structure can be designed in rule based system architecture. The
correct codes are shown to the users based on the algorithm below. Figure 2.6 shows
the control structure for only selection structure and Table 2.3 contains all the if-then

rules to be used for control structures.

Q: Problems? Algorithm

A: Control Structure If Problem is Control Structure

Q: Type of Control Structure Then many types of Control Structure

A: Selection structure If type is Selection structure «
Q: How many action? Then number of action to be performed
A:2 If action is 2

Then take alg(;rithm for1f/else

27

l

Search algorithm for
control structure

Problem =
Selection

Repetition Structure

Code for If structure

Code for If/else
structure

Code for Switch
structure

End

Figure 2.6: Flowchart to teach Control Structure (Selection Structure)

28

Table 2.3: IF-THEN rules for Control Structure

If (Question & Answer)

Then (Code)

Control Structure EQ Selection Structure AND Condition
Type EQ One-Way (If) AND Grade EQ A

if grade>= A Then
printf(“Passed\n”, grade);

Control Structure EQ Selection Structure AND Condition
Type EQ Two-Way (If/Else) AND Grade EQ A

if grade>= A Then
printf(“Passed\n”, grade)
else printf(“Failed™\n",
grade);

Control Structure EQ Selection Structure AND Condition
Type EQ Multipath (Switch) AND Grade EQ A

Switch (Grade/10){
Case 10:

Case 9:
printf(“A:Excellent\n”);
Case 8:

Case 7:

Case 6:
printf(“B:Credit\n”);
Case 5:
printf(“C:Pass\n”);
Case 4:
printf(“D:OK\n");
Case 3:

Case 2:

Case 1:

Case 0:
printf(“E:Failed\n”);
}

Control Structure EQ Repetition Structure AND Condition
Type EQ While AND Testl Grade EQ A AND Test2 Grade
EQ B AND Test3 Grade EQ C AND Test4 Grade EQ D AND
Test5 Grade EQ E

int counter, grade, total,
average;

total = 0, counter = 1;
while (counter<=5){
printf(“Enter your
grade™)

scanf(“%d”, &grade)
total = total + grade;
counter = counter +1;}
average = toial /5;

Control Structure EQ Repetition Structure AND Condition
Type EQ Do/While AND Testl Grade EQ A AND Test2
Grade EQ B AND Test3 Grade EQ C AND Test4 Grade EQ D
AND Test5 Grade EQ E

int counter =1, marks,
total=0, average;

dof{

printf(“Enter marks”™)
scanf(“%d”, &marks)
total = total + marks;
counter = counter +1;}
average = total /5;
}while (++counter<=5)

Control Structure EQ Repetition Structure AND Condition
Type EQ While AND Testl Grade EQ A AND Test2 Grade-
EQ B AND Test3 Grade EQ C AND Test4 Grade EQ D AND
TestS Grade EQ E

int marks, test, average,
total=0;

for(test=1 test<=5,test++)
printf(“Enter marks”)
scanf(“%d”, &marks)
total = total + marks;
average = total /5;}

2.3.2.3 Functions

Modules in C are called functions [3]. Functions allow programmer to modularize a
program. All variables declared in functions definitions are local variables. Most
functions have a list of parameters. The parameters provide the means for
communicating information between functions. A function’s parameters are also local

variables. The table below shows the predefined functions in math library [3].

Table 2.4: Examples of math library functions

[Function | Description [Example :
sqrt(x) Square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0
exp(x) Exponential function ¢* exp(1.0) is 2.718282
exp(2.0) is 7.389056
Log(x) Natural logarithm of x (base ¢) Log(2.718282) is 1.0
Log(7.389056) is 2.0

The format of a function definition is:
return-value-type function name (parameter list)
{
declarations
statements
/
When user defines a function, it is called programmer-define function such as function
maximum to determine and return the largest of three integers. The example of $uch

function is as below:

int maximum (int x, int y, int z)
{

int max = x;

30

if (v > max)
max =y,

if (z > max)
max = z;

return max;

/

2.3.2.3.1 Application of rules to teach function

Although there are many functions in C programming but only function maximum and

minimum will provided in this system. This system is only to assist the users to know

how the function works and useful to get the answer using numeric calculations.

Q: Problems?

A: Function

Q: Type of Function

A: Maximum

Q: Value variable A, B & C?

A:A=A,B=B&C=C

Algorithm
If Problem is Function
Then many types of Function
If type is Maximum
Then value for variable A and B
If B is B and value variable C is C

Then solution is code for maximum to

choose the maximum value between A, B

and C.

Ashtaig2g

31

PERPUSTAKAAN UNHV ERSITI MALAYA

1

Search algorithm for
functions

Problem =
maximum

Value variable
A=A&
Value variable
B=B&
Value variable
c=C

Problem = minimum

Value variable
A=A&
Value variable
B=B&
Value variable
Cc=C

Code for Maximum to
choose the maximum
value between of A, B
and C.

Code for Minimum to
choose the minimum
value between A, B
and C.

End

Figure 2.7: Flowchart to teach Functions

32

Table 2.5: IF-THEN rules for Function

If (Question & Answer)

Then (Code)

Function Type EQ Maximum AND Value Integer 1 EQ A
AND Value Integer 2 EQ B AND Value Integer 3 EQ C

{inta, b, c;
printf(“Enter integers”)
scanf(“%d%d%d”,&a,
&b,&c);
printf(“Maximum is: %d,
Maximum (a,b,c));

int (int x, int y, int z) {
int ans =w;

if(x>ans)

ans=x;

if(y>ans)

ans=y;

if(z>ans)

ans=z;

return 0;

}

return ans;

Function Type EQ Minimum AND Value Integer 1 EQ A
AND Value Integer 2 EQ B AND Value Integer 3 EQ C

{inta, b, c;
printf(“Enter integers”)
scanf(“%d%d%d” &a,
&b,&c);
printf(“Minimum is: %d,
Minimum (a,b,c));

int (int X, int y, int z) {
int ans =w;

if(x<ans)

ans=x;

if(y<ans)

ans=y;

if(z<ans)

ans=z;

return 0;

}

return ans;

}

33

2.3.2.4 Arrays and Sorts

Array is a group of memory locations related by the fact that they all have the same
name and the same type. The name of the array and the position of the particular
element in the array is specified for easy reference. Arrays occupy space in memory.
The programmer needs to specify the type of each element and the number of elements
required by each array so that the computer may reserve the appropriate amount of
memory.

Example:

intc[10]; /* to reserve lo elements for integer array c*/

Purpose: To initialize 10 element integer array n to zeros, and prints the array in tabular
format.
main()
{
intn[10], I;
for (i =0; i<=9; i++)
n[i] = 0;
printf (“%s%13s\n”, “Element”, “Value”);
for (i=0; i <= 9; i++)
printf (“%7d%13d\n”, I, n[i]);

return 0;

34

Sortings
Sorting is the process of arranging data in a given order. The content of an array may be
used to arrange the elements in ascending or descending order. There are three types of

sortings namely bubble sort, selection sort and recursive sort.

Example

Purpose: To sort an array of five elements using bubble sort. A list of five elements is
arranged in ascending order.

Before sort: 90, 20, 80, 60, 10

After sort: 10, 20, 60, 80, 90

for (i=0; i< 5; i++) {
if (num(i] > num(i+1]) {
temp = num(i];
num(i] = num [i+1];

num(i +1] = temp;

35

2.3.2.4.1 Application of rules to teach arrays

Array can be easily taught to students using rule based system architecture based on the

algorithm below.

Q: Problem

A: Arrays

Q: Size of the array

A:2

Q: Value of integer A and B?
A: AisAandBis B

Q: Histogram?

A: Yes

Algorithm
If Problem is Arrays
Then there 1 to 10 sizes available to choose
If size is 2
Then values for integer A and B
IfAis Aand Bis B
Then to display histogram is yes or no
If yes
Then solution is code for 2 arrays with
value A is A, value B is B and show

histogram.

36

!

Search algorithm
array

Input
number of
elements

Input
value of
clements

Display
histogram?

Display code for size of
array is 2 and value for
integer 1 and 2 is 5 and
histogram for the values

Display solution
based on input

Figure 2.8: Flowchart to teach Arrays

37

Table 2.6: IF-THEN rules for Array

If (Question & Answer) Then (Code)
Size of Array EQ 1 AND Value Integer 1 EQ A #define SIZE 1
AND Histogram EQ N int main () {

!'nt n [SIZE] = {A};

int i;

printf (“%s%]13s\n”, “ Element”,
“Value™);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d /i, n[i]);}
return 0;}

Size of Array EQ 2 AND Value Integer | EQ A
AND Value Integer 2 EQ B AND Histogram EQ N

#define SIZE 2

int main (){

int n [SIZE] = {A, B};

int i;

printf (“%s%]13s\n”, “ Element”,
“Value”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “i, n[i]);}
return 0;}

Size of Array EQ 3 AND Value Integer 1 EQ A
AND Value Integer 2 EQ B AND Value Integer 3
EQ C AND Histogram EQ N

#define SIZE 3
int main () {
int n [SIZE] = {A,B,C};

inti;

printf (“%s%]13s\n”, * Element”,
“Value™);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “i, n[i]);}
return 0;}

Size of Array EQ 4 AND Value Integer 1 EQ A
AND Value Integer 2 EQ B AND Value Integer 3
EQ C AND Value Integer 4 EQ D AND Histogram
EQN

#define SIZE 4

int main () {

intn [SIZE] = {A,B,C,D};

int i;

printf (“%s%13s\n”, Element”,
“Value”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “i, n[i]);}
return 0;}

Size of Array EQ 5 AND Value Integer 1 EQ A
AND Value Integer 2 EQ B AND Value Integer 3
EQ C AND Value Integer 4 EQ D AND Value
Integer S EQ E AND Histogram EQ N

#define SIZE 5

int main () {

int n [SIZE] = {A,B,C,D,E};

int i

printf (“%s%13s\n”, “ Element”,
“Value™);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “i, n[i]);}
return 0;}

Table 2.6, continued

If (Question & Answer) Then (Code)
Size of Array EQ 6 AND Value Integer 1 EQ A #define SIZE 6
AND Value Integer 2 EQ B AND Value Integer 3 int main (){

EQ C AND Value Integer 4 EQ D AND Value
Integer S EQ E AND Value Integer 6 EQ F AND
Histogram EQ N

int n [SIZE] = {A,B,C,D,E,F};

int iy

printf (“%s%13s\n”, ** Element”,
“Value”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “,i, n[i]);}

return 0;}
Size of Array EQ 7 AND Value Integer 1 EQ A #define SIZE 7
AND Value Integer 2 EQ B AND Value Integer 3 int main () {

EQ C AND Value Integer 4 EQ D AND Value
Integer S EQ E AND Value Integer 6 EQ F AND
Value Integer 7 EQ G AND Histogram EQ N

intn [SIZE] = {A,B,C,D,E,F,G};
int i;

printf (“%s%13s\n”, “ Element”,
“Value”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “i, n[i]);}

. return 0;}
Size of Array EQ 8 AND Value Integer 1 EQ A #define SIZE 8
AND Value Integer 2 EQ B AND Value Integer 3 int main () {

EQ C AND Value Integer 4 EQ D AND Value
Integer S EQ E AND Value Integer 6 EQ F AND
Value Integer 7 EQ G AND Value Integer 8 EQ H
AND Histogram EQ N

int n [SIZE] = {A,B,C,D,E,F,G,H};
int i;
printf (“%s%13s\n”, “ Element”,
“Value”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d i, n[i]);}

return 0;}
Size of Array EQ 9 AND Value Integer | EQ AND | #define SIZE 9
Value Integer 2 EQ B AND Value Integer 3 EQ C | int main (){

AND Value Integer 4 EQ D AND Value Integer 5
EQ E AND Value Integer 6 EQ F AND Value
Integer 7 EQ G AND Value Integer 8 EQ H AND
Value Integer 9 EQ I AND Histogram EQ N

int n [SIZE] = {A,B,C,D,E,F,G,H,I};

int i;

printf (“%s%13swn”, “ Element”,
“Value”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “.i, n[i]);}

return 0;}
Size of Array EQ 10 AND Value Integer 1 EQ A #define SIZE 10
AND Value Integer 2 EQ B AND Value Integer 3 int main () {
EQ C AND Value Integer 4 EQ D AND Value int n [SIZE] = «
Integer 5 EQ E AND Value Integer 6 EQ F AND {A,B,C,D,E,F,G,H,LJ};
Value Integer 7 EQ G AND Value Integer 8 EQ H | int i;

AND Value Integer 9 EQ I AND Value Integer 10
EQ J AND Histogram EQ N

printf (“%s%13s\n”, “ Element”,
“Value™);

for (i=0, i<=SIZE -1; i++) {
printf¢*%7d%13d *.i, ni]);}
return 0;}

39

Table 2.6, continued

If (Question & Answer) Then (Code)
Size of Array EQ 1 AND Value Integer 1 EQ A #define SIZE 1
AND Histogram EQ Y int main (){

intn [SIZE] = {A};

inti;

printf (“%s%13s\n”, “ Element”,
“Value”, “Histogram”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “,i, n[i]);}
for (j=1, j<=nl], j++)
printf(“%c™\n, **)

return 0;}
Size of Array EQ 2 AND Value Integer 1 EQ A #define SIZE 2
ANDValue Integer 2 EQ B AND Histogram EQ Y | int main () {
int n [SIZE] = {A,B};
inti;

printf (“%s%13s\n”, “ Element”,
“Value”, “Histogram”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d i, n[i]);}
for (j=1, j<=n[i], j++)
printf(“%c™\n, **)

return 0;}

Size of Array EQ 3 AND Value Integer 1 EQ A
AND Value Integer 2 EQ B AND Value Integer 3
EQ C AND Histogram EQ Y

#define SIZE 3
int main (){
int n [SIZE] = {A,B,C};

inti;

printf (“%s%]13s\n”, “ Element”,
“Value”, “Histogram™);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d *,i, n[i]);}
for (=1, j<=n[i], j++)
printf(“%c™\n, *’)

return 0;}
Size of Array EQ 4 AND Value Integer 1 EQ A #define SIZE 4
AND Value Integer 2 EQ B AND Value Integer 3 int main (){

EQ C AND Value Integer 4 EQ D AND
Histogram EQ Y

int n [SIZE] = {A,B,C,D};

inti;

printf (“%s%]13s\n”, “ Element”,
“Value”, “Histogram™);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d i, n[i]);}
for (=1, j<=nli, j++)
printf(“%c™\n, *)

return 03}

40

Table 2.6, continued

If (Questicn & Answer) Then (Code)
Size of Array EQ 5 AND Value Integer 1 EQ A #define SIZE 5
Value Integer 2 EQ B AND Value Integer 3 EQ C | int main (){

AND Value Integer 4 EQ D AND Value Integer 5
EQ E AND Histogram EQ Y

int n [SIZE] = {A,B,C,D,E};
inti;

printf (“%s%13s\n”, “ Element”,
“Value”, “Histogram”);

for (=0, i<=SIZE -1; i++) {
printf(“%7d%13d i, n[i]);}
for (j=1, j<=nl[i], j++)
printf(“%c™\n, **)

return 0;}
Size of Array EQ 6 AND Value Integer 1 EQ A #define SIZE 6
AND Value Integer 2 EQ B AND Value Integer 3 | int main () {

EQ C AND Value Integer 4 EQ D AND Value
Integer 5 EQ E AND Value Integer 6 EQ F AND
Histogram EQ Y

int n [SIZE] = {A,B,C,D,E,F};

int iy

printf (“%s%]13s\n”, “ Element”,
“Value”, “Histogram”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d i, n[i]);}
for (j=1, j<=n[il, j++)
printf(“%c™\n, ‘*’)

return 0;}
Size of Array EQ 7 AND Value Integer 1 EQ A #define SIZE 7
AND Value Integer 2 EQ B AND Value Integer 3 int main (){

EQ C AND Value Integer 4 EQ D AND Value
Integer 5 EQ E AND Value Integer 6 EQ F AND
Value Integer 7 EQ G AND Histogram EQ Y

int n [SIZE] = {A,B,C,D,E,F,G};

inti;

printf (“%s%]13s\n”, “ Element”,
“Value”, “Histogram”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d “i, n[i]);}
for (=1, j<=nlil, j++)

printf(“%c™\n, *’)
return 03} -
Size of Array EQ 8 AND Value Integer 1 EQ A #define SIZE 8
AND Value Integer 2 EQ B AND Value Integer 3 | int main () {

EQ C AND Value Integer 4 EQ D AND Value
Integer 5 EQ E AND Value Integer 6 EQ F AND
Value Integer 7 EQ G AND Value Integer 8 EQ H
AND Histogram EQ Y

int n [SIZE] = {A,B,C,D,E,F,G,H};
int i;

printf (“%s%13s\n”, “ Element”,
“Value”, “Histogram”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d /i, n[i]);}

for (j=1, j<=nli], j++)
printf(“%c™\n, <**)

return 0;}

41

Table 2.6, continued

If (Question & Answer) Then (Code)

Size of Array EQ 9 AND Value Integer 1 EQ A #define SIZE 9

AND Value Integer 2 EQ B AND Value Integer 3 | int main (){

EQ C AND Value Integer 4 EQ D AND Value int n [SIZE] = {A,B,C,D,E,F,G,H,1};
Integer S EQ E AND Value Integer 6 EQ F AND int i;

Value Integer 7 EQ G AND Value Integer 8 EQ H | printf (“%s%13s\n”, « Element”,
AND Value Integer 9 EQ I AND Histogram EQ Y | “Value”, “Histogram”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d i, n[i]);}
for (j=1, j<=nli, j++)
printf(“%c™\n, ‘**)

return 0;}

Size of Array EQ 10 AND Value Integer 1 EQ A #define SIZE 10

AND Value Integer 2 EQ B AND Value Integer 3 | int main (){

EQ C AND Value Integer 4 EQ D AND Value int n [SIZE] =

Integer 5 EQ E AND Value Integer 6 EQ F AND {A,B,C,D,E,F,G,H,I,J};
Value Integer 7 EQ G AND Value Integer 8 EQ H | int i;

AND Value Integer 9 EQ I AND Value Integer 10 | printf (“%s%13s\n”, “ Element”,
EQ J AND Histogram EQ Y “Value”, “Histogram”);

for (i=0, i<=SIZE -1; i++) {
printf(“%7d%13d i, n[i]);}
for (j=1, j<=nli, j++)
printf(“%c™\n, ‘**)

return 0;}

2.3.2.5 Pointers

Pointers are variables that contain memory addresses as their values. Normally a
variable directly contains a specific value whereas a pointer contains an address of a
variable that contains a specific value. Pointers must be declared before they can be

used such as in the example below:

Example:

int *countPtr, count;

The pointer operators are & and *. The & or address operator is a unary operator that
returns the address of its operand. The example of algorithm is as given below:
inty=S5;

int *yPtr;

42

yPtr = &y; /* assigns the address of the variable y to pointer variable yPtr */

The * operator or commonly referred as the indirection operator or dereferencing

operator, returns the value of the object to which its operand points.

Example:

printf (“%d’, *yPtr); /* points the value of variable y */

main ()
{
int a;
int *aPtr;
a=T7,
aPtr = &a;

printf (“The address of a is %p\n”
“The value of aPtr is %p\n\n”, &a, aPtr);
printf (“The value of a is %d\n”
“The value of *aPtr is %d\n\n”, a, *aPtr);
printf(“Proving that * and & are complements of”
“each other.\n&*aPtr = %p\n*&aPtr = %p\n”,
&*aPtr, *&aPtr);

return 0;

2.3.2.5.1 Application of rules to teach pointers
Q: Problem Algorithm
A: Pointers If Problem is Pointers

Q: Types of pointer solutions Then many types of pointer solutions

A: Call by Reference If solution type is call by reference
Q: Variable value? Then value of variable
At A If variable value is 5

Then take algorithm for Pointer and call by

reference for value variable is 5

44

Search algorithm
for pointers

Solution = call
by reference?

Call by value
solution

Input of
variable
value

Variable
value =5

'
Code for Pointer to |, Display
for call by refernce solution based
solution and for on input
value 5.

End

Figure 2.9: Flowchart to teach Pointers

45

Table 2.7: IF-THEN rules for Pointer

If (Question & Answer) Then (Code)
Ways to pass argument EQ Call by Value AND int cubebyvalue(int);
Function Type EQ Cube the Value AND Number of main() {

Variable EQ One AND Value Integer A EQ A

int number = A;

printf("Original value
%d\n",number);

number
=cubebyvalue(number);
printf("New value of the number
%d\n", number);

return 0;}

int cubebyvalue(int n) {
returnn * n* n;

Ways to pass argument EQ Call by Value AND
Function Type EQ Square the Value AND Number of
Variable EQ One AND Value Integer A EQ A

int squarebyvalue(int);
main(){

int number = A;
printf{"Original value
%d\n",number);

number =
squarebyvalue(number);
printf("New value of the number
%d\n", number);

return 0;}

int squarebyvalue(int n) {
returnn * n;

Ways to pass argument EQ Call by Reference AND
Function Type EQ Cube the Value AND Number of
Variable EQ One AND Value Integer A EQ A

int cubebyvalue(int*);

main(){

int number = A;

printf("Original value
%d\n",;number);

number =
cubebyvalue(number);
printf("New value of the number
%d\n", number);

return 0;}

int cubebyvalue(int *uPtr) {
return *nPtr * *nPtr * *nPtr);

}

Ways to pass argument EQ Call by Reference AND
Function Type EQ Square the Value AND Number of
Variable EQ One AND Value Integer A EQ A

int squarebyvalue(int*);
main(){

int number = A;
printf("Original value
%d\n",number);

number =
squarebyvalue(number);
printf("New value of the number
%d\n", number);

return 0;}

int squarebyvalue(int *nPtr) {
return *nPtr * *nPtr;

}

46

Table 2.7, continued

If (Question & Answer)

Then (Code)

Ways to pass argument EQ Call by Reference AND
Function Type EQ Cube the Value AND Number of
Variable EQ More Than One AND Number of
Variable EQ 2 AND Value Integer A EQ A, Value
Integer B EQ B AND Sort EQ N

#define SIZE 2

{int a [SIZE] = {A,B};

int i;

printf(“Data item in original
order\n”);

for(i=0, i<SIZE, i++)
printf(“%d4d\n”, a[i]);
return 0;}

Ways to pass argument EQ Call by Reference AND
Function Type EQ Square the Value AND Number of
Variable EQ More Than One AND Number of
Variable EQ 3 AND Value Integer A EQ A AND
Value Integer B EQ B AND Value Integer C EQ C

#define SIZE 3

{inta [SIZE] = {A,B,C};
int i;

printf(“Data item in original
order\n”);

AND Sort EQ N for(i=0, i<SIZE, i++)
printf(“%4d\n”, a[i]);
return 0;}

Ways to pass argument EQ Call by Reference, #define SIZE 4

Function Type EQ Square the Value, Number of
Variable EQ More Than One, Number of Variable EQ
4, Value Integer A EQ A, Value Integer B EQ B, Value
Integer C EQ C, Value Integer D EQ D, Sort EQ N

{int a [SIZE] = {A,B,C,D};
int i;

printf(“Data item in original
order\n”);

for(i=0, i<SIZE, i++)
printf(“%dd\n”, ai]);
return 0;}

Ways to pass argument EQ Call by Reference,
Function Type EQ Square the Value, Number of
Variable EQ More Than One, Number of Variable EQ
S, Value Integer A EQ A, Value Integer B EQ B, Value
Integer C EQ C, Value Integer D EQ D, Value Integer

#define SIZE 5

{int a [SIZE] = {A,B,C,D,E};
inti;

printf(“Data item in original
order\n”);

EEQE, Sort EQN for(i=0, i<SIZE, i++)
printf(“%4d\n”, a[i]);
return 0;}

Ways to pass argument EQ Call by Reference, #define SIZE 6

Function Type EQ Square the Value, Number of
Variable EQ More Than One, Number of Variable EQ
6, Value Integer A EQ A, Value Integer B EQ B, Value
Integer C EQ C, Value Integer D EQ D, Value Integer
E EQ E, Value Integer F EQ F, Sort EQ N

{inta [SIZE] = {A,B,C,D,E,F};
inti;

printf(“Data item in original
order\n”);

for(i=0, i<SIZE, i++)
printf(“%d4d\n”, a[i]);

return 0;}
Ways to pass argument EQ Call by Reference AND #define SIZE 7
Function Type EQ Square the Value AND Number of | {inta [SIZE] =
Variable EQ More Than One AND Number of {A,B,C,D,E,F,G};
Variable EQ 7 AND Value Integer A EQ A AND int;

Value Integer B EQ B AND Value Integer C EQ C
AND Value Integer D EQ D AND Value Integer E EQ
E AND Value Integer F EQ F AND Value Integer G
EQ G AND Sort EQ N

printf(“Data item in original
order\n”);

for(i=0, i<SIZE, i++)
printf(“%4d\n”, a[i]);
return 0;}

47

Table 2.7, continued

If (Question & Answer) Then (Code)

Ways to pass argument EQ Call by Reference AND | #define SIZE 8
Function Type EQ Square the Value AND Number | {inta [SIZE] =

of Variable EQ More Than One AND Number of {A,B,C,D,E,F,G,H};
Variable EQ 8, Value Integer A EQ A AND Value inti;

Integer B EQ B AND Value Integer C EQ C AND
Value Integer D EQ D AND Value Integer E EQ E
AND Value Integer F EQ F AND Value Integer G
EQ G AND Value Integer H EQ H AND Sort EQ N

printf(“Data item in original
order\n™);

for(i=0, i<SIZE, i++)
printf(“%4d\n”, ai]);

return 0;}
Ways to pass argument EQ Call by Reference, #define SIZE 9
Function Type EQ Square the Value, Number of {int a [SIZE] =
Variable EQ More Than One, Number of Variable {A,B,C,D,E,F,G,H,I};
EQ9, Value Integer A EQ A, Value Integer BEQ B, | inti;

Value Integer C EQ C, Value Integer D EQ D, Value
Integer E EQ E, Value Integer F EQ F, Value
Integer G EQ G, Value Integer H EQ H, Value
Integer [EQ I, Sort EQ N

printf(“Data item in original
order\n”);

for(i=0, i<SIZE, i++)
printf(“%4d\n”, a[i]);
return 0;}

Ways to pass argument EQ Call by Reference AND
Function Type EQ Square the Value AND Number
of Variable EQ More Than One AND Number of
Variable EQ 10 AND Value Integer A EQ A AND
Value Integer B EQ B AND Value Integer C EQ C
AND Value Integer D EQ D AND Value Integer E

#define SIZE 10

{int a [SIZE] =
{A,B,C,D,E,F,G,H,LJ};
inti;

printf(“Data item in original
order\n”);

EQ E AND Value Integer F EQ F AND Value for(i=0, i<SIZE, i++)
Integer G EQ G AND Value Integer H EQ H AND printf(“%4d\n”, a[i]);
Value Integer I EQ I AND Value Integer J EQ J return 0;}

AND Sort EQ N

Ways to pass argument EQ Call by Reference AND | #define SIZE 2

Function Type EQ Cube the Value AND Number of
Variable EQ More Than One AND Number of
Variable EQ 2 AND Value Integer A EQ A AND
Value Integer B EQ B AND Sort EQ Y

void bubbleSort(int*, const int)
{int a [SIZE] = {A,B};

int i

printf(“Data item in original
order\n”);

for(i=0, i<SIZE, i++)
printf(“%4d\n”, a[i]);

return 0;}

void bubbleSort (int *array, const
int size) “
void swap(int*, int*)

int pass,j;

for (pass =0; pass < size-1;
pass++)

if (array[j]> array[j+1])

swap (&array(j], &array[j+1]);}
void swap (int *element1Ptr, int
*element2Ptr)

int hold = *element1Ptr;
*element1Ptr= *element2Ptr;
*element1Ptr = hold; }

48

Table 2.7, continued

If (Question & Answer)

Then (Code)

Ways to pass argument EQ Call by
Reference AND Function Type EQ
Square the Value AND Number of
Variable EQ More Than One AND
Number of Variable EQ 3 AND
Value Integer A EQ A AND Value
Integer B EQ B AND Value Integer
CEQ C AND Sort EQ Y

#define SIZE 3

void bubbleSort(int*, const int)

{int a [SIZE] = {A,B,C};

int i;

printf(“Data item in original order\n”);

for(i=0, i<SIZE, i++)

printf(“%4d\n”, ai]);

return 0;}

void bubbleSort (int *array, const int size)

void swap(int*, int*)

int pass,j;

for (pass =0; pass < size-1; pass++)

if (array[j]> array[j+1])

swap (&array(j], &array[j+1]);}

void swap (int *element1Ptr, int *element2Ptr)
int hold = *element1Ptr;

*element1Ptr= *element2Ptr; *element1Ptr = hold;

Ways to pass argument EQ Call by
Reference, Function Type EQ Cube
the Value, Number of Variable EQ
More Than One, Number of
Variable EQ 4, Value Integer A EQ
A, Value Integer B EQ B, Value
Integer C EQ C, Value Integer D EQ
D, Sort EQ Y

#define SIZE 4

void bubbleSort(int*, const int)

{inta [SIZE] = {A,B,C, D};

int i

printf(“Data item in original order\n”);

for(i=0, i<SIZE, i++)

printf(“%4d\n”, a[i]);

return 0;}

void bubbleSort (int *array, const int size)

void swap(int*, int*)

int pass,j;

for (pass =0; pass < size-1; pass++)

if (arrayl[j]> array[j+1])

swap (&array[j], &array[j+1]);}

void swap (int *element1Ptr, int *element2Ptr)
int hold = *element1Ptr;

*element1Ptr= *element2Ptr; *element1Ptr = hold;}

Ways to pass argument EQ Call by
Reference, Function Type EQ
Square the Value, Number of
Variable EQ More Than One,
Number of Variable EQ 5, Value
Integer A EQ A, Value Integer B EQ
B, Value Integer C EQ C, Value
Integer D EQ D, Value Integer E EQ
E. Sort EQ Y

#define SIZE 5

void bubbleSort(int*, const int)

{int a [SIZE] = {A,B,C,D,E};

int i;

printf(“Data item in original order\n”);

for(i=0, i<SIZE, i++)

printf(“%4d\n”, a[i]);

return 0;}

void bubbleSort (int *array, const int size)

void swap(int*, int*)

int passj; :

for (pass =0; pass < size-1; pass++)

if (array[j]> array[j+1])

swap (&array|j], &array[j+1]);}

void swap (int *element1Ptr, int *element2Ptr)
int hold = *element1Ptr;

*element1Ptr= *element2Ptr; *clement1Ptr = hold;

49

Table 2.7, continued

If (Question & Answer)

Then (Code)

Ways to pass argument EQ Call by
Reference AND Function Type EQ
Cube the Value, AND Number of
Variable EQ More Than One AND
Number of Variable EQ 6 AND
Value Integer A EQ A AND Value
Integer B EQ B AND Value Integer
C EQ C ANDValue Integer D EQ D
AND Value Integer E EQ E AND
Value Integer F EQ F AND Sort EQ
Y

#define SIZE 6

void bubbleSort(int*, const int)

{int a [SIZE] = {A,B,C, D,E,F};

inti;

printf(“Data item in original order\n”);
for(i=0, i<SIZE, i++)

printf(“%4d\n”, afi]);

return 0;}

void bubbleSort (int *array, const int size)
void swap(int*, int*)

int pass,j;

for (pass =0; pass < size-1; pass++)

if (array[j]> array[j+1])

swap (&array(j], &array[j+1]);}

void swap (int *element1Ptr, int *element2Ptr)
int hold = *element1Ptr;

*element1Ptr= *element2Ptr;

*element1Ptr = hold; }

Ways to pass argument EQ Call by
Reference AND Function Type EQ
Cube the Value, AND Number of
Variable EQ More Than One AND
Number of Variable EQ 7 AND
Value Integer A EQ A AND Value
Integer B EQ B AND Value Integer
CEQ C AND Value Integer D EQ D
AND Value Integer E EQ E AND
Value Integer F EQ F AND Value
Integer G EQ G AND Sort EQ Y

#define SIZE 7

void bubbleSort(int*, const int)

{int a [SIZE] = {A,B,C,D,E,F,G};

int i;

printf(“Data item in original order\n”);
for(i=0, i<SIZE, i++)

printf(“%4d\n”, a[i]);

return 0;}

void bubbleSort (int *array, const int size)
void swap(int*, int*)

int pass,j;

for (pass =0; pass < size-1; pass++)

if (arrayl[j]> array[j+1])

swap (&array[j], &array[j+1]);}

void swap (int *element1Ptr, int *element2Ptr)
int hold = *element1Ptr;

*element1Ptr= *element2Ptr;

*element1Ptr = hold; }

50

Table 2.7, continued

If (Question & Answer)

Then (Code)

Ways to pass argument EQ Call by
Reference, Function Type EQ Cube the
Value, Number of Variable EQ More
Than One, Number of Variable EQ 8,
Value Integer A EQ A, Value Integer B EQ
B, Value Integer C EQ C, Value Integer D
EQ D, Value Integer E EQ E, Value
Integer F EQ F, Value Integer G EQ G,
Value Integer H EQ H, Sort EQ Y

#define SIZE 8

void bubbleSort(int*, const int)
{inta [SIZE] = {A,B,C, D,E,F,G, H};
inti;

printf(“Data item in original order\n”);
for(i=0, i<SIZE, i++)

printf(“%4d\n”, ai]);

return 0;}

void bubbleSort (int *array, const int size)
void swap(int*, int*)

int pass,j;

for (pass =0; pass < size-1; pass++)
if (array[j]> array[j+1])

swap (&array(j], &array[j+1]);}
void swap (int *element1Ptr, int
*element2Ptr)

int hold = *element1Ptr;
*element1Ptr= *element2Ptr;
*element1Ptr = hold; }

Ways to pass argument EQ Call by
Reference, Function Type EQ Cube the
Value, Number of Variable EQ More
Than One, Number of Variable EQ 9,
Value Integer A EQ A, Value Integer B EQ
B, Value Integer C EQ C, Value Integer D
EQD, Value Integer E EQE, Value
Integer F EQ F, Value Integer G EQ G,
Value Integer H EQ H, Value Integer I EQ
I, Sort EQ Y

#define SIZE 9

void bubbleSort(int*, const int)

{int a [SIZE] = {A,B,C,D,E,F,G,H,I};
inti;

printf(“Data item in original order\n™);
for(i=0, i<SIZE, i++)

printf(“%4d\n”, ai]);

return 0;}

void bubbleSort (int *array, const int size)
void swap(int*, int*)

int pass,j;

for (pass =0; pass < size-1; pass++)
if (array[j]> array[j+1])

swap (&array[j], &array[j+1]);}
void swap (int *element1Ptr, int
*element2Ptr)

int hold = *element1Ptr;
*element1Ptr= *element2Ptr;
*element1Ptr = hold;}

51

Table 2.7, continued

If (Question & Answer) Then (Code)

Ways to pass argument EQ Call by #define SIZE 10
Reference AND Function Type EQ void bubbleSort(int*, const int)

Cube the Value AND Number of {inta [SIZE] = {A,B,C,D,E,F,G,H,1J};
Variable EQ More Than One, AND int1;

Number of Variable EQ 10 AND printf(“Data item in original order\n”);
Value Integer A EQ A AND Value for(i=0, i<SIZE, i++)

Integer B EQ B AND Value Integer C | printf(“%4d\n”, a[i]);
EQ C, Value Integer D EQ D AND return 0;}

Value Integer E EQ E AND Value void bubbleSort (int *array, const int size)
Integer F EQ F AND Value Integer G | void swap(int*, int*)

EQ G AND Value Integer H EQ H, int pass,j;

AND Value Integer | EQ I AND Value | for (pass =0; pass < size-1; pass++)

Integer J EQ J AND Sort EQ Y if (array[j]> array[j+1])

swap (&array[j], &array[j+1]);}

void swap (int *element1Ptr, int *element2Ptr)
int hold = *element1Ptr;

*element1Ptr= *element2Ptr;

*element1Ptr = hold;}

2.3.2.6 File Processing

Storage of data in variables and arrays is temporary; all such data is lost when a
program terminates. Files are used for programmer’s retention of large amounts of data.
Computers store files on secondary storage devices, especially disk storage devices.
Files can be created, updated and processed. This part will explain further on how to

create a sequential file.

2.3.2.6.1 Application of rules to teach file processing .
File processing can be taught easily using rule-based system architecture based on the
algorithm below. Figure 2.10 explains how the system give the output of code based on

the user selection and Table 2.8 depicts the if-then rules for file processing.

Problem

File Processing

Types of processes ?

Create A Sequential File
Variable type to be written?
Integer

Variable name?

A

File name?

test

Algorithm
If Problem is File Processing
Then many types of processes
If process is create a sequential file
There are many variable types
If variable type is integer
Then variable name
If variable name is A
Then file name
If file name is test
Then code for create
sequential file and integer

A and file name is test.

'

Search algorithm file
processing

'

Process = Create
Sequential file?

Variable type =
Integer?

Input for
Variable
name &

file name

Create Random
Access File

Variable type =

double or char

Display code for create
sequential file and
variable type is integer
and variable name and file
name as input

Display solution
based on input

Figure 2.10: Flowchart to teach File pr

ing (Create Seq ial File)

Table 2.8: IF-THEN rules for File Processing

If (Question & Answer) Then (Code)
Process EQ Create Sequential File AND {int A;
Variable Type EQ Integer AND FILE *cfPtr;

Variable A Value EQ A

if((cfPtr = fopen (“A.text”, “w”))==NULL)
printf(“File could not be opened\n™)
else

printf(“Enter the A\n")
printf(“Enter EOF to end input\n”)
printf(“Enter your data here\n”)
scanf(“%d, &A)

while (!feof(stdin)){

fprintf(cfPtr, “%d\n,”A)

scanf(“%d, &A)}

felose (cfPtr);}

return 0;}

Process EQ Create Sequential File AND
Variable Type EQ Double AND
Variable A Value EQ A

{double A;

FILE *cfPtr;

if((cfPtr = fopen (“A.text”, “w”))==NULL)
printf(“File could not be opened\n™)
else

printf(“Enter the A\n”)
printf(“Enter EOF to end input\n”)
printf(“Enter your data here\n”)
scanf(“%1f, &A)

while (!feof(stdin)) {

fprintf(cfPtr, “%d\n,”A)
scanf(“%1f, &A)}

fclose (cfPtr);}
return 0;}
Process EQ Create Sequential File AND {char A;
Variable Type EQ Char AND FILE *cfPtr;
Variable A Value EQ A if((cfPtr = fopen (“A.text”, “w”))==NULL)

printf(“File could not be opened\n™)
else

printf(“Enter the A\n”)
printf(“Enter EOF to end input\n”)
printf(“Enter your data here\n”) N
scanf(“%c, &A)

while (!feof(stdin)){

fprintf(cfPtr, “%d\n,”S)

scanf(“%c, &A)}

fclose (cfPtr);}

return 0;}

2.3.3 Benefits of Designing in Rule-Based System Architecture

Ctutorial4u is designed in rule-based system architecture in order to develop the best
tutoring system where there will be input from user to retrieve solution from the
system. It is a two-way learning process. The system is designed with respect to user
interaction where the system acts as a guide for the students to excel in C programming

for novice users.

2.3.4 Analysis and Synthesis
Based on the expert system explanation and its components, rule based system
architecture is chosen to develop Ctutorial4u as it is closely resembles the way human

experts solve problem.

Forward chaining

Forward chaining can provide a considerable amount of information from only a small
amount of data. It works well when a problem naturally begins by gathering
information and seeing what can be inferred from it. This is what needed in Ctutorial4u
where it is more feasible to begin a session with data given by the user to derive
conclusion rather than beginning a session by trying to prove a present conclusion is

valid.

Monotonic Reasoning
Monotonic reasoning is the best reasoning technique for Ctutorial4u since the facts
remain unchanged in the database for the problems. The rules are set in the inference

engine to for look appropriate solution.

56

2.4 Surveys on existing system

Thousands of expert systems have been constructed in the last few years. Expert
systems have been applied in many areas, such as business, chemistry, education,
finance, law, mathematics, medicine, mining and space technology. They are used for
control, design, diagnosis, prediction, planning, simulation etc. Thousands of systems
have been developed and are in use throughout the world. Expert systems have moved
from the research labs to the general market place and industry. This has resulted from
the better understanding of the technology and the production of tools for building such

systems. The Table 2.9 shows some of the early expert system constructed.

Table 2.9: Example of expert systems

Expert system | Description 3 x "
DENDRAL A system developed at Stanford to interpret mass
spectrograms.
Drilling Advisor A system developed by Elf to help determine why a drill
sticks.
MYCIN A medical diagnosis system. |
\
XCON A computer configuration system developed by DEC for
VAX computers.
LENDING ADVISOR | Used for evaluating the risks on possible loans.
PROUST For finding semantic bugs in novice Pascal programmers’
code.

We need to analyze some similar system to get some ideas, knowledge and guidance.
So, there are few system being analyzed and compared to produce a system which

meets the requirements of users.

57

2.4.1 MYCIN

Mycin was an expert system developed at Stanford in the 1970s using Lisp. It is a
program for advising physicians on treating bacterial infections of the blood and
meningitis. MYCIN conducts a question and answer dialog. After asking basic facts
about the patient such as name, sex and age, MYCIN asks about suspected bacterial
organisms, suspected sites of infection, the presence of specific symptoms such as fever
or headache which is relevant to diagnosis. It then recommends a certain course of
antibiotics. MYCIN’s dialogs are in English so it avoids having to understand freely
written English by controlling the dialog. It outputs sentences, but the user types only
single words or standard phrases. Its major innovations over many previous expert
systems were that it uses measures of uncertainty (not probabilities) for its diagnoses
and the fact that it is prepared to explain its reasoning to the physician, so he can decide

whether to accept it.

MYCIN extended the notion that the knowledge base should be separate from the
inference engine, and its rule-based inference engine was built on a backward-chaining
or goal-directed conirol strategy. Since it was designed as a consultant for physicians,
MYCIN was given the ability to explain both its line of reasoning and its knowledge.
Mycin represented its knowledge as a set of IF-THEN rules with certainty factors. The
following is an English version of one of Mycin's rules: ’
IF the infection is pimary-bacteremia

AND the site of the culture is one of the sterile sites

AND the suspected portal of entry is the gastrointestinal tract

THEN there is suggestive evidence (0.7) that infection is bacteroid.

58

The 0.7 is roughly the certainty that the conclusion will be true given the evidence. If
the evidence is uncertain, the bits of certainties of evidence will be combined with the
certainty of the rule to give derive a conclusion. The action part of the rule could just be
a conclusion about the problem being solved, or it could be an arbitrary lisp expression.

This allowed great flexibility.

Mycin use the basic backward chaining reasoning strategy that we described above.
However, Mycin used various heuristics to control the search for a solution or proof of
some hypothesis. These helped to make the reasoning efficient and to prevent the user

being asked too many unnecessary questions.

Though it’s an expert system for medical field and not for education or learning, but
MYCIN act as a premier or role-model to rely on for all future expert systems
development. The rules IF- THEN of MYCIN undoubtedly are the guidance for

CTutorial4u.

2.4.2 The Rule-Based Expert System Using an Interactive QA Sequence

This rule-based system consists largely of a main window system (knowledge
acquisition module, rule-based inference engine, and user interface for input/output), a
simple GIS mapping system, and a database [2]. The knowledge acquisition modute,
inference engine, and user interface were built using Visual Basic 6.0. The GIS
mapping system was also built using Visual Basic 6.0 based on MapObjects Version 2.
MapObjects has many GIS facilities and can be cxlendc.d and integrated easily with
other systems using a conventional language such as Visual C++ and Visual Basic. The
database for the knowledge base (prologue, questions and answers, and rules) is

designed in Microsoft Access 2002.
59

Figure 2.11: Main menu of rule-based expert system
Expert main menu: Consists of three sub menus: new problem, open problem. The
expert part is the knowledge acquisition module. The expert part can be used to
construct new knowledge (prologue, question, answer, and rule) or to update the

existing knowledge by experts.

rer L-NEW FLile § o T [JE |
= e _ saver || ernt | ciose_|

s =t v 1] Move First_| Gve Last |
c lver
— Qindex : T _ MovePrev Move Next |
Question : =1
Answer I
New | Add | Delete | _Update | Save | Close |

Figure 2.12: Expert menu’s input window
User main menu: The rule-based inference engine was implemented in the user ;;art
because the inference rule and the search strategy are needed in the user part in order to
solve a selected problem. This inference engine is buih.bascd on deductive reasoning
using forward chaining. The inference engine will generate questions automatically
when the user selects a problem. The solution will also be generated from the previous

questions and answers using the existing rules by the rule-based inference engine.

60

Solving Problems ﬁ.]

Select Problem: [airphoto ~] Print__| _ Close

Prologue T [Qu

1swer]

Question
IS THERE ANY ARTIFICIAL STRUCTURES? (YES.NO) -
NO

DOES IT LOOK LIKE LONG LINE FEATURE? (YES.NO)
S

IS THE LINE FEATURE WIDER THEN THE OTHER LINE FEATURES?
(YES.NO)
INO

IS THERE MANY INTERSECTIONS / STRUCTURES ALONG THE FEATURE?
(YES.NO)
s

. |
Answer : |
Solution . i 4 o
Small Car Road =]
=

Figure 2.13: Solving problem window for user menu

Map main men: Map main menu has sub menu called map viewer. This map viewer
can support raster data (ESRI Grid data), standard image data (bitmap (*.bmp), gif
(*.gif), jpeg (*.jpg), window metafile (*.wmf), and so on), and several vector data
formats (ESRI coverage, ESRI shape data, and CAD drawings). The map viewer can be
used for visual interpretation of GIS data using scaling modules (Zoom In/Out and
Pan). The map viewer also can be used for the thematic mapping. The thematic
mapping process has four steps. First, the user selects features on the existing image or
map. Second, the user draws polygons for the boundary of the selected features. Third,
the user interprets the selected features using the user part in the expert system. Last,
the user labels the polygon for selected features using Iab.eling module when the expert

system generates the solution.

61

Fle View Layers Hep

S THERE ATy ARTIAGIAL ST TUREET (25 110)

OES T LOOK LRE LONG LINEAR FEATLAET (15140

rmw o " Entertextiabel

[Commercc I

Map Units Unknown

T
[x7s1.45 158521

F“ MapTips | =

—T
|] 1216PM

Figure 2.14: Map Viewer of Rule-Based Expert System

Table 2.10: Rules for Rule-Based Expert System

If Then
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ YES AND SHAPE1 Residential
EQ NO AND SITUATION2 EQ NO esiden
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ YES AND SHAPEL || (/=
EQ NO AND SITUATION2 EQ YES
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ YES AND SHAPE] .

Industrial

EQ YES
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND Sehool
SITUATION1 EQ YES AND SITUATION2 EQ NO
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND Service (park)
SITUATION1 EQ YES AND SITUATION2 EQ YES P!
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND Commercial
SITUATIONT EQ NO AND SITUATION2 EQ NO
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND
SITUATION1 EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ NO Commercial
/AND PATTERN EQ NO
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND
SITUATION1 EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ NO Golf Course
AND PATTERN EQ YES
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND Residential
SITUATIONI EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ YES (Apartment)
AND SITUATION4 EQ NO P
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND
SITUATIONT EQ NO AND SITUATION2 EQ YES AND SITUATION? EQ YES Industrial
AND SITUATION4 EQ YES
STRUCTURE EQ YES AND SHAPE2 EQ YES AND SHAPE3 EQ YES Highway
STRUCTURE EQ YES AND SHAPE2 EQ YES AND SHAPE3 EQ NO AND Railroad

SITUATIONS EQ NO

STRUCTURE EQ YES AND SHAPE2 EQ YES AND SHAPE3 EQ NO AND
SITUATIONS EQ YES

Small Car Road

STRUCTURE EQ NO AND PATTERN EQ YES Golf Course
STRUCTURE EQ NO AND PATTERN EQ NO AND SHAPE4 EQ YES Lake
STRUCTURE EQ NO AND PATTERN EQ NO AND SHAPE4 EQ NO AND TONE Evergreene

EQ WHOLEY

The Rule-Based Expert System discussed earlier actually is quite similar to

CTutorial4u. The If-Then rules in Table 2.10 actually are guideline to develop the rules

for CTutorial4u. This system uses interactive question and answer session of YES and

NO answers to derive a solution. There are so many ways to derive solution.

63

CTutorial4u can’t use question and answer with YES and NO answer but it is designed
to use question and answer with selection criteria. The answers are set in the rules so

the users can only select the answers specified.

2.43 INTELLITUTOR II

An Intelligent programming environment for learning programming is an interactive
application of knowledge-based Artificial Intelligence [11]. INTELLITUTOR II
consists of GUIDE, ALPUS 1I and a C environment as an integrated environment, and
is implemented as a server-client system on the Internet. The server system consists of
a Web server, an ALPUS II server and a C server [10]. The service includes reading C
documents, editing C programs with guide and help functions, detecting logical bugs by
means of a knowledge-based program understander ALPUS I, compiling the program
and executing it with the C environment. ALPUS is a knowledge-based program
understander by means of four kinds of programming knowledge on program
semantics, which are knowledge on algorithms, knowledge on programming
techniques, knowledge on variables and knowledge on bugs. The knowledge on a

programming language is used as well as a base level understanding.

Knowledge Modeling in ALPUS II
In ALPUS II the algorithm-oriented programming knowledge plays a key role in “
understanding a buggy program. This knowledge is represented in a hierarchical data

structure called HPG.

Program Understanding in ALPUS II

Program understanding in APLUS II is done by four major steps such as [9]:

04

Step 1:

Step 2:

Step 3:

Generalization of program statements is done first, mainly by
introducing the language independent representation of program
statements in AL (abstract language). AL was designed to represent
source statements in both Pascal and C, so that knowledge-based
program comprehension can be done by means of the common
knowledge base in which every peace of the knowledge is represented in
the AL formalism. Student’s program is translated to AL statements first
in this step. For example, an assignment statement is represented as “(<-
Left-variable Expression)”, and conditional loops are represented as
“(?Loop Expression Statement)” for a so-called pre-check loop for a
While-Do statement in Pascal and a While statement in.

Normalization of program segments is done next by five steps to
decrease a variety of program code. At first, a source program in AL is
converted to a Lisp-like representation with line number. Next, order of
relational operators is normalized so that the evaluation can be easier.
Simplification of a program structure is done next. For example,
meaningless procedures are detected and inserted into calling program
by modification of code and variables. Deletion of redundant type and
constant declarations is done next. Deletion of the RECORD-type
declarations is done lastly. “
Identification of key variables and their roles is done next based on the
data obtained by Cognitive experiment as shown in the following
procedure. At first rough segmentation of 'the source program is done by
means of HPG-oriented algorithm knowledge. Then, likelihood scores
are evaluated by means of the associated attributes attached to each key

variable stored within the knowledge base, where the role and locations
05

Step 4:

within the algorithm are defined. The variable which has been assigned
with the highest score is known as the identified variable and its role.
The instance frame is generated from the associated class frame for each
identified variable. It should be stressed that in this process bugs are not
considered. This strategy w‘orks very well even if the program includes
bugs and incompleteness.

Identification of each process in detail is done next as the final step. The
logical bugs and associated intentions are identified in this step by
pattern matching techniques between the student’s program segments
and the template knowledge. The pattern matching is done against each
node of the HPG graph from the root to the leaves one-by-one as
follows:

1) One process is picked up from 5 the HPG nodes.

2) The template is generated from the attached knowledge and
associated identified variables.

3) The pattern matching is applied to an associated segment of the target
student’s program to detect correctness or buggyness. The standard
pattern is tried first. If the template matches then the system understands
this segment as correct. If failed, then acceptable patterns are tried one
by one. If one of the acceptable patterns has matched then the systgm
supposes that although this segment would work well better coding
should be used instead. If failed again, then buggy patterns are tried. If
one of them matched then the system supposes this as a buggy segment.
If failed, then the system supposes this segment as buggy one. However
any advice can not be produced since information is not available within

the knowledge base.
66

ALPUS Il (Server

Program understanding

Socke! '

—

Evecul
[GUIDE Smar Text Editor

includa<stdio, h>
oid nainl)

int ais|
az0

£or (1=133<ebsibe)

Figure 2.15: Overview of the APLUS II

2.4.4 The ANDES Physics Tutoring System

The Andes project originated with an Office of Naval Research management initiative
to forge close relationships between ONR and the Navy's academic institutions. In
particular, there was an interest in trying out artificially intelligent tutoring technology,
a longstanding research area for ONR, at the Naval Academy. The Andes system is an
intelligent tutoring system that has helped hundreds of students to improve their
learning for physics in university. It replaces pencil and paper problem solving
homework. Students continue to attend the same lectures, labs and recitations. Five
years of experimentation at the United States Naval Academy indicates that it
significantly improves student learning [7]. This report isa comprehensive description
of Andes. It describes Andes’ pedagogical principles and features, the system design
and implementation, the evaluations of pedagogical effectiveness, and our plans for

dissemination.
67

Students read the problem (top of the upper left window), draw vectors and coordinate
axes (bottom of the upper left window), define variables (upper right window) and
enter equations (lower right window). These are actions that they do when solving
physics problems with pencil and paper. As soon as an action is done, Andes gives
immediate feedback unlike Pencil and Paper Homework (PPH). Entries are colored
green if they are correct and red if they are incorrect. This is called flag feedback. In
Figure 2.16, all the entries are green except for equation 3, which is red. Variables are
defined by filling out a dialogue box, such as one shown in Figure 2.17. Vectors and
other graphical objects are first drawn by clicking on the tool bar on the left edge of
Figure 2.16, then drawing the object using the mouse, then filling out a dialogue box
like the one in Figure 2.17. Filling out these dialogue boxes forces students to precisely
define the semantics of variables and vectors. PPH does not require this kind of
precision, so students often just use variables in equations without defining them. If
students include an undefined variable in an Andes equation, the equation turns red and

amessage box pops up indicating which variable(s) are undefined.

Physics Workbonch - [415a.hd)
Yo tielo

[ZTH
2000-ky car In neutral ot the (op of @ 20.0 de
Grvawray 30.0'm Tong Slipe e paridng brel

ol
aubhtiey exphicity.
e BGuGht quandty that

The
the problem seetks.
270 vewrees

Figure 2.16: Andes screen
68

Displacement ofBody [car =]
Atime]Tn o T 'l

Figure 2.17: A dialogue box for drawing a vector
2.4.5 Softsyst

Softsys provides software services as well as training courses. It is an online system.
The C++ Quiz is used heavily from visitors worldwide which consists of short (12

questions) or detailed (55 questions).

The main feature of the system is the C++ quiz is which has two portion short quiz and
detailed quiz. Basically here, the idea and design of the quiz is being evaluated to get
better idea how the new system can be designed. The quiz is designed as a collection of
question from various topics in C++ language and it is not based on topics which it is
not a good learning approach provided to naive users but it is a good practice for those
who are in the intermediate stage. The intention of the system is to provide chance to
the intermediate user test their knowledge in various topics of C++ to master the
language and acts a testing ground of knowledge. The system applies good design
principles of human computer interaction. It has a smiley face to indicate the
percentage of correct answer out of the total questions and if is beyond 50% then ;he
smil;:y face will appear with smiling face whereas if the marks are lower than 50% a
sad face will appear. These are not only the features and another main feature is the
solution for the wrong answers. The system is able to detect the wrong answers and

mange to give the correct answers with reasons stated.

69

The principles of C++ quiz design will help to design the interface for new rule-based

system for the Ctutorial4u.

2.4.6 Carnegie Learning Cognitive Tutor Integrated Math I, II, ITT
Using Cognitive Tutor Integrated Math curricula, students work with multiple

representations of a linear function: tables, graphs, algebraic formulas and written

text. By translating from one repr ion to another, students gain a solid
understanding of how the representations interconnect [2]. Cognitive Tutor let the
students learn in an environment that is similar to working one-on-one with an
instructor. Each student benefits from an individualized course of instruction complete

with immediate feedback, prescriptive mediation and assessment.

+ Problem Scenario: The Problem Scenario helps students make connections
between real-life problem situations and the mathematics needed to solve them.
Embedded questions provide breadth and relevance to the problem-solving
process.

+ Worksheet: As students progress through the cprﬁculum, they learn to
generalize specific instances into mathematical formulas. Students complete the
Worksheet (which functions like a spreadsheet) by recording answers to
questions posed in the Problem Scenario. «

+ Solver: The Solver encourages students to solve equations within the context of
the problem. Students learn techniques to solve problems and discover the value
of mathematical skills beyond the classroom.

« Graph: Students represent mathematical functions graphically, set boundaries

and intervals, label axes and plot points and lines.

70

Just-in-Time Help Messages: When students make errors, they receive immediate
feedback. This gives students the opportunity to correct mistakes quickly. Teachers can
spend more time with students who need additional help, confident that all students are
engaged and on task.

Skills: The Cognitive Tutor dynamically assesses and tracks each student’s progress
and level of understanding on specific mathematical skills. As the Tutor guides them
down an individualized learning path, students can access this information on demand,

which encourages them to be accountable for their own learning progress.

Though it is not designed for C programming language but it has some basic good
principles of designing a tutorial system for the students such the problem scenario,
worksheets, solver, just-in time help messages and skills as mentioned above. The only
drawback of the system is it is not designed in a knowledge based system where if then
rule statement was not being used. The suggestion to this system is to use rule-system

architecture to enhance it functionality, modifiability and scalability.

2.5 CTutorialdu Vs Existing Systems

The analysis of other system is very important to develop a new system although the
existing system does not perform all the functionalities as the new system but actually
the new system will adopt all the good strategies in the similar existing system and try

to eliminate all the lacking in terms of design and functionalities.

Table 2.11: Comparison of existing system’s and functionalitics

System | MYCIN [Rule- INTELL | ANDES | Softsys [Cognitiv
Based ITUTO e Tutor
i | Expert |R ¢
Functional t _ | System | 3 |
If-Then rules Y Y N N N N
Tutorial N N Y Y Y Y
Quiz N N N N Y Y
Help Y Y Y Y Y Y
Human computer | Y Y Y Y Y Y
interaction metaphor
Central database Y Y Y Y Y Y
User friendliness N Y Y Y Y Y
Consistency Y Y Y Y Y Y
Security Y Y Y Y Y Y |
Immediate feedback Y Y Y Y Y Y]
Program Y Y Y Y Y Y
compiler/solver

The table above explains that all the systems functionalities were equally contributed to
the system design of CTutorial4u. All these systems actually lacking at least one of the
functionalities but the Ctutorial4u complying all the above functionalities and attempts
to give the best to the users by adopting all good behaviors. The non rule-based expert
systems such as Softsys and Cognitive Tutor didn’t use If-Then rules such as
INTELLITUTOR and ANDES (intelligent systems) whereas Softsys and Cognitive
Tutor (normal online systems). Human computer metaphor is one of the interactivity
features needed by expert system which complied by Rule-Based Expert System Using
Interactive Question and Answer Squence, ANDES, Softsys and Cognitive Tutor such
as uéing the traffic light and smiley concepts in quiz session. All the systems uses
central database and all has consistent interface throughout the whole system. These
systems are user friendly where users don’t find it difficult to use the systems the
second time they login in except MYCIN needs the expert in that field who are in

medical line to use because mostly uses medical terms. In terms of security, all the

72

system allows the administrators to amend the database or the design of the system

where all are well protected with password.

After analyzing all the above stated system’s functionalities, the Ctutorial4u includes
just-in time help messages from Cognitive Tutor to indicate the percentage of correct
answer out of the total questions and if is beyond 50% then the message excellent will
appear with smiley whereas if the marks are lower than 50% then a try again message
will appear with sad smiley. Ctutorial4u basically adopts this feature from Cognitive
Tutor. Apart from that, CTutorial4u not only act as learning software but it is more like
a real tutor where based on the user selection for every chapter, the system somchow
solve the user directed problems using rules in the working memory. The memory

contains all the possible solution for every topic in C.

On top of that, CTutorial4u also include quiz for every chapter to test the student’s
knowledge about a particular topic and store the respective student’s marks in the
database and quiz session applies the human computer metaphor adopted from
Cognitive Tutor. All the systems compared above, provide immediate feedback to
students and not like normal procedures in classroom or hospital where we got to wait
till the lecturer mark our papers and doctors to diagnose the sickness. The only
drawback of CTutorial4u is it does provide C compiler within the system itself for the
student to test their programming skills or ability to write codes on their own where

with it the system actually can correct their errors by debugging their codes.

2.6 Software and Technologies
Visual Basic 6.0 will be used to design the user interfaces and Microsoft Access 2000

to design the database of CTutorial4u.
73

2.6.1 Visual Basic

Visual Basic 6.0 is one the programming language used to develop most of the
standalone software. It is based on graphical and event-driven user interface where an
object can be built easily sing interface and the codes are easy to built as well. Actually
event processor controls Visual Basic and nothing will happen until the event is being
identified. When the event is identified, code relevant with the event procedure will be

processed and done.

Advantages of Visual Basic

® Perfect set of objects

¢ Many icons and reusable components inclusive of graphical interface

* Good design of data structure for mathematic and string and graphic function
operation

® Effectively connected to database especially (Open Database Connectivity) —
server/client based for Microsoft SQL Server, SyBaseSQL and Oracle and
Microsoft Access 2000 as well.

¢ Supports ActiveX

o Use package and deployment wizard to differentiate a.ll the application easily

* Ability to connect to Internet

Added features in Visual Basic 6.0
* The Scripting Runtime Library
= The FileSystemObject and TextStream classes
= The Dictionary class
* New language features

= Dynamic control creation

* The CallByName feature

* The new Extender Validate event and CausesValidation property for
controls

" Arrays can be retumned from functions and assigned

* New component creation features

* Use UDTs as parameters or return types of public classes

* Persist class data in ActiveX components

* CreateObject improvement

* Aclass can act as a DataSource

* Aclass can act as a DataConsumer

* New HasDC property

* New members of the UserControl class

= Controls can be LightWeight (windowless)

* New FontChanged event of the StdFont class

2.6.2 Microsoft Access

Database Management System (DBMS) actually provide access to the users to reach
the data and to change the data to relevant information needed by the users. There are
many available DBMS but Microsoft Access 2000 is used to develop Ctutorial4u.
Microsoft Access is the best way to connect intranet to retrieve data from database fa-isl

and effectively.

75

