TABLE OF CONTENTS

ACKNO	VLEDGIVIE	=1 4 1	
LIST OF	TABLES		2
LIST OF	FIGURES		X
LIST OF	ABBREVI	ATIONS	X
ABSTRA	CT		xv
СНАРТ	ER 1		INTRODUCTION
1.1 PRE	FACE		
1.2 PRO	JECT OVE	RVIEW	
1.3 JUS	TIFICATIO	N	
1.4 STA	TE OF PRO	DBLEM	
1.5 RES	EARCH OV	VERVIEW	
1.6 OBJ	ECTIVES		- 1
1.7 MO	TIVATIONS	S AND CONTRIBUTIONS	1
1.8 THE	SIS ORGA	NIZATION	1
1.9 SUM	IMARY		1
	L		
CHAPT	ER 2		LITERATURE REVIEW
2.1 PRE	FACE	,	1
2.2 VISU	JALIZATIO	ON IN MEDICINE	1
2.2.1	Digital I	mage Processing	. 1
	2.2.1.1	Computer Vision	1'
	2.2.1.2	Image Processing	1
	2.2.1.3	Computer Graphics	2
2.2.2	Medical	Imaging	2
2.2.3	Medical	Imaging Techniques	2-
2.2.4	MRI and	l its Technology	2
	2.2.4.1	The Principles of MRI	2

	2.2.5	MRI Iss	ues	36
		2.2.5.1	Patient Safety in MRI	38
2.3	THRE	E-DIMEN	NSIONAL IMAGING	39
	2.3.1	Overvie	w	40
	2.3.2	Pre-proc	eessing	42
		2.3.2.1	Data Conversion	42
		2.3.2.2	Filtering	42
		2.3.2.3	Interpolation	43
		2.3.2.4	Data Structures	44
	2.3.3	Object I	Definition	46
		2.3.3.1	Segmentation	46
		2.3.3.2	Interpretation	48
	2.3.4	Surface	-Based Rendering	49
	2.3.5	Voxel-I	Based Rendering	50
	2.3.6	Applica	ations of 3-D imaging	50
2.4	MEDI	CAL IMA	AGE SEGMENTATION	52
	2.4.1	Segmen	tation Accuracy Factors	53
		2.4.1.1	Dimensionality	53
		2.4.1.2	Soft Segmentation and Partial Volume Effects	54
		2.4.1.3	Continuous or Discreet Segmentation	54
		2.4.1.4	Validation	55
	2.4.2	Segmen	atation Approaches	56
		2.4.2.1	Automation Level	56
		2.4.2.2	Data Level	58
2.5	MRI S	EGMEN'	TATION	59
	2.5.1	Segmen	tation Methods	61
		2.5.1.1	Thresholding	61
		2.5.1.2	Edge-Based Segmentation	62
		2.5.1.3	Region Growing	64
		2.5.1.4	Classifiers	66
		2.5.1.5	Clustering	67
		2.5.1.6	Markov Random Field	69
		2.5.1.7	Artificial Neural Networks	70

		2.5.1.8	Deformable Models	72
		2.5.1.9	Atlas-Guided Approaches	73
		2.5.1.10	Hybrid Approaches	74
		2.5.1.11	Other Approaches	77
	2.5.2	Multimod	al Segmentation	80
	2.5.3	Problems	in MRI Segmentation	81
	2.5.4	Summary	of Applications	84
	2.5.5	Application	ons of MRI Segmentation	85
2.6	MRI F	EMUR SE	GMENTATION	86
	2.6.1	The Femu	ır	86
	2.6.2	Femur Se	gmentation Methods	89
2.7	PROPA	AGATING	INTERFACES FOR SEGMENTATION	91
	2.7.1	Introducti	on	91
	2.7.2	Theory of	Curve and Surface Evolution	95
		2.7.2.1	Methods of Tracking a Moving Boundary	97
		2.7.2.2	Viscosity	104
	2.7.3	Level Set	Methods	107
		2.7.3.1	Level Set Methods: An Initial Value Formulation	108
		2.7.3.2	The Narrow Band Level Set Method	115
		2.7.3.3	Fast Marching Methods: A Boundary Value Formulation	117
	2.7.4	Advantag	es of Perspective	122
	2.7.5	A Brief C	omparison	123
	2.7.6	Application	ons of Level Set Methods	126
		2.7.6.1.	Fluid Mechanics	126
		2.7.6.2	Materials Sciences	127
		2.7.6.3	Grid/Mesh Generation	127
		2.7.6.4.	Semiconductor Profiling	128
		2.7.6.5	Seismology	128
		2.7.6.6	Robotics and Path Navigation	129
		2.7.6.7	Combustion	129
		2.7.6.8	Noise Removal and Image Enhancement	130
		2.7.6.9	Computer-Aided Design	130

167

		2.7.6.10	Imaging and medical imaging	131
2.8	CHAF	TER SUM	MARY	132
СН	APTE	R 3	METHODO	LOGY
3.1	PREF.	ACE		133
3.2	OVER	VIEW OF	METHODOLOGY	133
3.3	THE N	METHODO	DLOGY	135
	3.3.1	MRI Imag	ge Acquisition	135
	3.3.2	Storage a	nd Access of Images	135
	3.3.3	Pre-proce	ssing for 2-D Segmentation	136
	3.3.4	The 2-D S	Segmentation Algorithm	140
		3.3.4.1	Selection of the Seed Point	144
		3.3.4.2	Determining the 4-neighbours of a Pixel	144
		3.3.4.3	Reloading the Image	145
		3.3.4.4	Gradient Computation	146
		3.3.4.5	Obtaining the Minimum Point	152
		3.3.4.6	Computing the Control Function	154
		3.3.4.7	In the Loop	155
	3.3.5	Pre-proce	ssing for 3-D Segmentation	157
	3.3.6	The 3-D S	Segmentation Algorithm	160
		3.3.6.1	Selection of the Seed Point	161
		3.3.6.2	Determining the 6-neighbours of a Voxel	161
		3.3.6.3	Reloading the Slice	162
		3.3.6.4	Gradient Computation	163
		3.3.6.5	Obtaining the Minimum Voxel	165
		3.3.6.6	Computing the Control Function	165
		3.3.6.7	In the Loop	165
	3.3.7	Isosurface	Rendering and Lighting Models	166

3.4 SUMMARY

СН	APTE	R 4	RESULTS	AND DISCUSSION
4.1	PREFA	ACE		168
4.2	MRI II	MAGE ACQUISITION		169
4.3	STOR	AGE AND ACCESS OF MR IM	IAGES	170
4.4	PRE-P	ROCESSING FOR 2-D SEGME	ENTATION	170
4.5	RESU	LTS OF 2-D SEGMENTATION		177
	4.5.1	Segmentation Results of Data S	Set 1	178
	4.5.2	Segmentation Results of Data S	Set 2	185
	4.5.3	Segmentation Results of Data S	Set 3	191
	4.5.4	Segmentation Results of Data S	Set 4	193
4.6	PRE-P	ROCESSING FOR 3-D SEGME	ENTATION	195
4.7	RESUI	LTS OF 3-D SEGMENTATION		195
	4.7.1	Segmentation Results of Data S	Set 1	196
	4.7.2	Segmentation Results of Data S	Set 2	198
	4.7.3	Segmentation Results of Data S	Set 3	200
4.8	THE IS	SSUE OF ACCURACY		202
4.9	SUMM	IARY		204
СН	APTE	R 5		CONCLUSION
5.1	PREFA	ACE		205
5.2	DISCU	ISSIÓN OF ALGORITHM		205
5.3	CONT	RIBUTIONS		211
5.4	SUGG	ESTION FOR FUTURE ENHA	NCEMENT	212
5.5	CONC	LUDING REMARKS		214
5.6	SUMN	IARY		215
RE	FERE	NCES		216

List of Tables

Table 4.1	MRI data sets used for segmentation	169
Table 4.2	Segmentation results for other slices in Data Set 1	184
Table 4.3	Segmentation results for other slices in Data Set 2	190

List of Figures

Figure 1.1	Chapter overview	
Figure 1.2	Thesis overview	1
Figure 2.1	Chapter overview	1
Figure 2.2	Axial plane conventions	2
Figure 2.3	An MRI scan in progress	2
Figure 2.4	Hydrogen nuclei in the natural state (left), and after application of the magnetic field, $B_{\rm o}$	3
Figure 2.5	The RF pulse B_{rf} is applied perpendicular to the magnetic field B_{s} causing the tipping motion of the M vector	3
Figure 2.6	The nuclei return to their original state, where M is parallel to B_o	33
Figure 2.7	The process of relaxation	33
Figure 2.8	Three-Dimensional imaging pipeline	40
Figure 2.9	Implementation factors in segmentation	53
Figure 2.10	Overview of segmentation approaches	6
Figure 2.11	Histogram with three classes of intensity values	6
Figure 2.12	Region growing from a seed point	6-
Figure 2.13	Partitioned 2-D feature space	60
Figure 2.14	The human femur	83
Figure 2.15	Parts of the femur	8
Figure 2.16	Two types of curves	9:
Figure 2.17	A curve evolving under its curvature	9
Figure 2.18	Graph of a simple moving interface	9
Figure 2.19	The marker particle technique	9
Figure 2.20	Merging of flames	10

Figure 2.21	Marker particles on merging flames	10
Figure 2.22	Viscosity in an interface	10
Figure 2.23	A curve propagating with speed F in the normal direction	10
Figure 2.24	Representation of the level set method	109
Figure 2.25	A curve evolving with regards to its surface representation	11
Figure 2.26	The narrow band surrounding the original interface	117
Figure 2.27	Representation of the fast marching method	118
Figure 2.28	Graph of distance against time	120
Figure 3.1	Overview of research methodology	134
Figure 3.2	Shading effect caused by pixel values outside the data range	137
Figure 3.3	Summary of pre-processing steps for 2-D segmentation	140
Figure 3.4	Brief overview of 2-D segmentation algorithm	14
Figure 3.5	The seed point	141
Figure 3.6	The fast marching update procedure	143
Figure 3.7	Four-neighbourhood of a point	144
Figure 3.8	A grid point and its 4-neighbours	145
Figure 3.9	Computational grid	146
Figure 3.10	Progress of the fast marching method	153
Figure 3.11	Pre-processing steps for 3-D segmentation	158
Figure 3.12	Voxel computation method	159
Figure 3.13	The 3-D segmentation algorithm	160
Figure 3.14	A voxel and its 6-neighbours	162
Figure 4.1	Overview of presentation of results	168
Figure 4.2	Comparison of segmentation results for the ACR and TIFF formats	172
Figure 4.3	A comparison of the brain images before and after enhancement	173

Figure 4.4	A comparison of the heart images before and after enhancement	17
Figure 4.5	A comparison of the segmentation results obtained for the different image types	170
Figure 4.6	Segmentation results of Slice 1, from Data Set 1	178
Figure 4.7	Comparison of segmentation results for different c values	179
Figure 4.8	Segmentation results of Slice 9, from Data Set 1	180
Figure 4.9	Segmentation results of Slice 12, from Data Set 1	18
Figure 4.10	Segmentation results of Slice 17, from Data Set 1	183
Figure 4.11	Segmentation results of Slice 1, from Data Set 2	186
Figure 4.12	Segmentation results of Slice 10, from Data Set 2	187
Figure 4.13	Segmentation results of Slice 20, from Data Set 2	188
Figure 4.14	Segmentation results of Slice 1, from Data Set 3	192
Figure 4.15	Segmentation results of Slice 4, from Data Set 4	193
Figure 4.16	The 3-D model obtained from Data Set 1	197
Figure 4.17	Monitoring the evolving 3-D interface through the individual femur slices	198
Figure 4.18	The 3-D model obtained from Data Set 2	199
Figure 4.19	Monitoring the evolving 3-D interface through the individual brain slices	200
Figure 4.20	The 3-D model obtained from Data Set 3	201

List of Abbreviations

1-D	One-dimensional
2-D	Two-dimensional
3-D	Three-dimensional
ANN	Artificial Neural Network
ASM	Active Shape Models
CAD	Computer-Aided Design
CT	Computed Tomography
DWT	Discrete Wavelet Transform
EM	Expectation-maximization
FCM	Fuzzy c-Means
MDM	Magnetic Dipole Moment
mm	millimeter
mm^3	millimeter cube
MOD	Magneto-Optical Disk
MR	Magnetic Resonance
MRF	Markov Random Field
MRI	Magnetic Resonance Imaging
NMŖ	Nuclear Magnetic Resonance
NN	Neural Network
PDE	Partial Differential Equations
PET	Positron Emission Tomograph
RF	Radio Frequency

RGB Red, Green and Blue

ROI Region Of Interest

SOM Self-Organizing Map

SPECT Single Photon Emission Computed Tomography

T Tesla

TE Time to Echo

TR Time to Repeat

WT Wavelet Transform

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY UNIVERSITY OF MALAYA

Degree : Master of Computer Science

Name of candidate : Christina Shanti Nayagam

Title : Level Set Segmentation of MR Images for Extraction of

Femur Bone and Tissues

Supervisor : Associate Professor Dr. N. Selvanathan