USING BENTHIC MACROINVERTEBRATE COMMUNITY FOR WATER QUALITY CLASSIFICATION WITH NOTES ON THE CADDISFLY LARVAE (TRICHOPTERA) IN A RIVER, ENDAU-ROMPIN FOREST RESERVE, MALAYSIA

By

CHAN VOON SENG

BEING A DISSERTATION PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY (ENVIRONMENTAL MANAGEMENT)

INSTITUTE OF POSTGRADUATE STUDIES
UNIVERSITY OF MALAYA
KUALA LUMPUR
2004
ABSTRACT

The study aims to characterise the community of benthic macro-invertebrates and to use the structure metric as a biotic index criterion for assigning water quality classification in a pristine stream of the Endau-Rompin Forest Reserve, Johore, Malaysia. To this end, an inventory of benthic fauna was established; the composition, taxa richness and abundance of the macro-invertebrate populations, particularly the dominant insect groups Ephemeroptera-Plecoptera-Trichoptera (EPT) were studied. The distributional patterns within groups were also analysed and tested statistically for any significant difference. The benthic macro-invertebrate populations of Selai River were sampled in three occasions during dry periods using visual-hand picking and kick-net collection methods at thirteen stations. The organisms were sorted and identified to family and generic levels using standardised identification keys. Physical-chemical parameters and hydrological regime of the organisms’ habitats were qualitatively recorded to understand the micro-habitats of the invertebrates. The biological measures including EPT taxa richness and abundance, Hilsenhoff’s Family Biotic Index (FBI) and Lenat’s Genus Biotic Index (GBI), the Biological Monitoring Working Party (BMWP) scoring systems and some physical-chemical variables were compared and integrated to define the water quality ratings of Selai River.

Selai River, a headwater of Endau River, had a rich and considerably diverse macro-invertebrate population, comprising 129 genera in sixty-seven families in thirteen orders. The community was dominated by the clean-water insect-groups EPT (11.76-32.58 %) and Odonata (11.76 % of the dominants). The One-way ANOVA
results on the abundance data of all benthos indicated subtle difference in the
distribution of Plecoptera (F=6.043, p<0.05) and Megaloptera (F=3.458, p<0.05).
The cluster analysis based on single linkage clustering model yielded a dendrogram
showing four clusters of the thirteen stations: they are groups of lentic, mixed ripples
and pools, ripples, and lotic habitats. The FBI values (ranging from 3.2 to 6.2) and
those of GBI (ranging from 2.6 to 5.5) fluctuated closely to each other and provide
similar indication on the gradient and/or environmental changes along the river. The
BMWP values ranged from 43 to 171 scores, depicting the same trend in water
quality changes as the FBI and GBI schemes. In comparison with DO, pH, PO₄,
NO₃, Si₄ concentrations, conductivity and temperature, these biotic indices were
compared and ranked to provide a "median" class for each station. The class
categories along the thirteen stations of Selai River varied from Class I (excellent) to
Class III (slightly polluted water quality). The classification results, although
regarded as conservative, described an acceptable status that is within the National
Water Quality Standards for the protection of nature reserve.

Among the indicating insect assemblage, Trichoptera (caddisflies) predominated in
richness and abundance and this dominance prompted interest and study on some
biological aspects of some hydropsychids, a philopotamid and a stenopsyched which
were abundantly collected during this short-term study.
ABSTRAK

Sungai Selai, sebahagian hulu Sungai Endau, kaya dengan pelbagai populasi invertebrata-makro, mengandungi 129 “genera” dalam 67 famili yang terdiri daripada 13 “order”. Komuniti tersebut didominasikan oleh kumpulan serangga air-
bersih EPT (11.76-32.58 %) and Odonata (11.76 % daripada yang dominan). Keputusan sehala ANOVA ke atas data lebihan kesemua bentos menunjukkan perbezaan yang tidak ketara dalam penyebaran Plecoptera (F=6.043, p<0.05) dan Megaloptera (F=3.458, p<0.05). Analisis berkelompok berdasarkan model "single linkage clustering" menghasilkan satu dendrogram di mana stesyen-stesyen ini dikelompokkan kepada 4 kelompok: iaitu kumpulan berhabitat air tenang, antara tenang dan berpusar, berpusar, serta air deras. Nilai-nilai FBI (dalam linkungan 3.2 hingga 6.2) dan GBI (dalam linkungan 2.6 hingga 5.5), mempunyai perubahan julat yang ketara namun menghasilkan petunjuk yang sama ke atas perubahan kecerunan dan/atau alam sekitar di sepanjang sungai. Nilai-nilai BMWP dalam linkungan 43 hingga 71 mata, memaparkan haluan yang sama dalam perubahan kualiti air sebagaimana dengan skim FBI dan GBI. Berbanding dengan kepekatan oksigen terlarut (DO), pH, PO₄, NO₃, Si₄, konduktiviti dan suhu, indeks biotik ini dibanding dan ditentukan kedudukannya untuk menyediakan kelas pertengahan untuk setiap stesyen. Kategori kelas kesemua 13 stesyen di sepanjang Sungai Selai berbeza daripada Kelas I (sangat baik) hingga Kelas III (kualiti air yang sedikit tercemar). Keputusan klasifikasi, walau dianggap konservatif, menghuraikan satu status yang berada di dalam linkungan Piawaian Kualiti Air Kebangsaan untuk perlindungan simpanan alam semulajadi.

Di kalangan perkumpulan serangga petunjuk, Trichoptera (caddisflies) adalah dominan dalam kekayaan dan lebihan, dan dominasi ini menarik minat dan kajian ke atas sebahagian aspek biologi sebilangan "hydropsychids", "philopotamid" dan "stenopsycheid" yang dikumpul dengan banyak sepanjang kajian jangka-pendek ini.
ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere appreciation to my Supervisor, Assoc. Professor Dr. Yap Siaw Yang, for her continuous encouragement, patience and guidance throughout the course of this study, for which it would not have completed without her generous assistance. It has been a great experience working under her supervision as she constantly shared her invaluable experience and knowledge in many fields.

My sincere thanks to Professor Dr. Haji Mohamed Abdul Majid (Dean of Science Faculty) and Professor Dr. Lim Ah Lan for their advice and words of encouragement.

I would also like to thank Mr. Ponniah, Mr. Naggapan, Ms. Khairin Yahya and Ms. Chan Yoke Mui for their contributions during the field trips. A special thank to En. Mohamad Adli Mansor of Endau-Rompin Base Camp and Perbadanan Taman Negara Johor for their assistance and permission to use the base camp’s facilities throughout the field sampling works.

Many thanks and grateful acknowledgements to IPS, University of Malaya, for the research grant, Vote F: F0155/2003B, given to me to ease the financial burden incurred throughout this project and also to the academic and administrative staff for rendering their services for the completion of this study.
CONTENTS

Page

TITLE ... i

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... vi

CONTENTS .. vii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF PLATES ... xiv

LIST OF EQUATIONS ... xv

CHAPTER 1: INTRODUCTION ... 1

1.1 WATER QUALITY MANAGEMENT ... 2

1.1.1 Water Quality Monitoring Programme ... 3

1.1.2 Quality Assurance ... 4

1.2 APPROACH OF BIOLOGICAL ASSESSMENT AND MONITORING 5

1.2.1 Concept of Biological Assessment and Monitoring 5

1.2.2 Use of Biological Assessment and Monitoring Programme 7

1.2.3 Biological Monitoring Techniques ... 9

1.2.4 Macroinvertebrate-Based Monitors and Assessment 10

1.3 OBJECTIVES OF THE STUDY ... 11

CHAPTER 2: LITERATURE REVIEW ... 13

2.1 RIVER CONTINUUM CONCEPT ... 13
2.2 ECOLOGY OF AQUATIC INSECT ... 14

2.2.1 Habitat Affiliation, Habit and Distributional Pattern 14

2.2.2 Aquatic Insect Orders – Ephemeroptera, Plecoptera and Trichoptera (EPT) Group vs Odonata as Water Quality Indicator Taxon .. 15

2.3 WATER QUALITY CLASSIFICATION USING EPT METRIC AND MACROINVERTEBRATE-BASED BIOTIC INDICES ... 16

2.4 WATER QUALITY .. 17

2.4.1 Natural Factors Influencing Water Quality of Pristine River 17
 (a) Climate .. 18
 (b) Watershed characteristics ... 19
 (c) Microbiological growth ... 19

2.4.2 Human-Induced Factors Influencing Water Quality of Pristine River .. 20

2.5 ENDAU-ROMPIN FOREST RESERVE 21

2.6 ECOLOGY OF TRICHOPTERA (CADDISFLIES) 24

2.6.1 The Life Cycle and History of Trichoptera 24
 (a) The Egg Stage .. 25
 (b) The Larva .. 26
 (c) The Pupa .. 27

2.6.2 General Description of External Morphology 28

2.6.3 Movement, Feeding and Respiration 28
 (a) Movement .. 28
 (b) Feeding .. 29
 (c) Respiration ... 29

2.6.4 The Economic Importance of Trichoptera 30

2.6.5 Potential Use of Trichoptera as Water Pollution Indicator 32

2.6.6 Habitat Affiliation, Distribution and Seasonal Abundance of Trichoptera ... 33

CHAPTER 3: STUDY AREA AND SAMPLING STATIONS 35

3.1 STUDY AREA .. 35
3.2 SAMPLING FREQUENCY ...35
3.3 DESCRIPTION OF SAMPLING STATIONS37

CHAPTER 4: THE COMMUNITY OF BENTHIC MACRO-INVERTEBRATES IN SELAI RIVER AND THE USE OF ITS STRUCTURE METRIC AS A CRITERION FOR WATER QUALITY CLASSIFICATION48

4.1 INTRODUCTION ..48

4.2 METHODOLOGY ..48

4.2.1 Field Study ..48

4.2.1.1 Sampling of Fauna ..49

4.2.1.2 Measurement of Water Quality Parameters50

4.2.2 Sorting and Laboratory Analysis51

4.2.3 Data Processing ...52

4.2.4 Biotic Indices ..53

4.2.4.1 Tolerance Values of Family- and Genus Biotic Indices (FBI & GBI) ...53

4.2.4.2 Biological Monitoring Working Party (BMWP) Scores54

4.2.5 Criteria for Assigning Water Quality Classification56

4.3 RESULTS AND DISCUSSIONS ..59

4.3.1 Benthic Macroinvertebrate Population59

4.3.1.1 Species Composition ..59

4.3.1.2 Community Structure: Taxa Richness and Abundance67

4.3.1.3 Distributional Patterns ..72

4.3.2 Biotic Indices and Scores ...75

4.3.2.1 Tolerance Values: Family- and Genus Biotic Indices (FBI & GBI) ..75
4.3.2.2 Biological Monitoring Working Party (BMWP) Scores and Schemes ...77

4.3.2.3 Comparisons of FGI and GBI with BMWP Schemes78

4.3.2.4 Water Quality in Comparison with Water Quality Criteria and Standards for Protection of Nature Reserve80

4.3.3 Criteria for Assigning Water Quality Classification80

CHAPTER 5: SOME BIOLOGICAL ASPECTS OF CADDISFLIES84

5.1 INTRODUCTION ..84

5.2 METHODOLOGY ..84

5.3 RESULTS AND DISCUSSIONS ..85

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS96

REFERENCES ...100

APPENDICES

Appendix A: Populations of Benthic Macroinvertebrates at Stations along Selai River, Endau-Rompin – Trip 2, 11/10/2002 to 14/10/2002105

Appendix B: Populations of Benthic Macroinvertebrates at Stations along Selai River, Endau-Rompin – Trip 3, 02/05/2003 to 04/05/2003109

Appendix C: Standard Deviation of Mean Populations of Benthic Macroinvertebrates at Stations along Selai River, Endau-Rompin ..113

Appendix D: Composition of Benthic Macroinvertebrates at Stations along Selai River, Endau-Rompin ...117

Appendix E: Newman-Keuls Test ..118

Appendix F: Dendrogram Constructed based on the Genera of Macroinvertebrates Showing Clusters of Similar Stations along Selai River and its Tributaries ..120
Appendix G: Populations of Benthic Macroinvertebrates at Stations along Selai River used for Estimation of Family Biotic Index (FBI)121

Appendix H: Populations of Benthic Macroinvertebrates at Stations along Selai River used for Estimation of Genus Biotic Index (GBI)123

Appendix I: Tolerance Values (Ranging from 0 to 10) for FBI and GBI based on Aquatic Insects of Selai River at the Endau-Rompin National Park ...126

Appendix J: Absence and Presence of Populations of Benthic Macroinvertebrates at Stations along Selai River used for Estimation of BMWP129

Appendix K: The Biological Scores Allocated to Groups of Organisms by the Biological Monitoring Working Party (BMWP) Score131

Appendix L: Typical Field Record Sheet for Biological Sampling and Ecological Surveys ...132
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description/Mean/Classification/Parameters</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Description of Sampling Stations</td>
<td>40</td>
</tr>
<tr>
<td>Table 2</td>
<td>Community Structure and Biotic Index Criteria for Assigning Water Quality Ratings Appropriate for Endau River Hilly Areas</td>
<td>57</td>
</tr>
<tr>
<td>Table 3</td>
<td>BMWP Categories for Assigning Water Quality Classification Ratings of Malaysian Rivers</td>
<td>58</td>
</tr>
<tr>
<td>Table 4</td>
<td>Mean Populations of Benthic Macroinvertebrates at Stations along Selai River, Endau-Rompin</td>
<td>61</td>
</tr>
<tr>
<td>Table 5</td>
<td>Taxa Richness of Benthic Macroinvertebrates at Stations along Selai River, Endau-Rompin</td>
<td>68</td>
</tr>
<tr>
<td>Table 6</td>
<td>The Biotic Indices and BMWP Scores Estimated for Stations along Selai River, Endau-Rompin</td>
<td>76</td>
</tr>
<tr>
<td>Table 7</td>
<td>Physical-Chemical Parameters for Assigning Water Quality at Stations along Selai River, Endau-Rompin</td>
<td>81</td>
</tr>
<tr>
<td>Table 8</td>
<td>Proposed Classification of Water Quality at Stations along Selai River, Endau-Rompin</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peninsular Malaysia: Location of Endau-Rompin National Park</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Endau-Rompin: Location of Sampling Stations</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Taxa Composition of Benthic Macroinvertebrates along Selai River, Endau-Rompin</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>EPT/Total Taxa Richness (%) at Stations along Selai River, Endau-Rompin</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>EPT Abundance at Stations along Selai River, Endau-Rompin</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Dendrogram Constructed based on the Family of Macroinvertebrates Showing Clusters of Similar Stations along Selai River and its Tributaries</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>FBI & GBI Values of Aquatic Insects at Stations along the Longitudinal Gradient of Selai River, Endau-Rompin</td>
<td>76</td>
</tr>
<tr>
<td>8a</td>
<td>BMWP Scores of Aquatic Insects at Stations along the Longitudinal Gradient of Selai River, Endau-Rompin</td>
<td>79</td>
</tr>
<tr>
<td>8b</td>
<td>ASPT Scores of Aquatic Insects at Stations along the Longitudinal Gradient of Selai River, Endau-Rompin</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>Hydropsychidae: Hydropsyche sp.</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>Hydropsychidae: Ceratopsyche sp.</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>Hydropsychidae: Cheumatopsyche sp.</td>
<td>91</td>
</tr>
<tr>
<td>12</td>
<td>Hydropsychidae: Potamyia sp.</td>
<td>92</td>
</tr>
<tr>
<td>13a</td>
<td>Philopotamidae: Chimarra sp.</td>
<td>93</td>
</tr>
<tr>
<td>13b</td>
<td>Philopotamidae: Chimarra & Wormaldia spp.</td>
<td>94</td>
</tr>
<tr>
<td>14</td>
<td>Stenopsycheidae: Stenopsyche sp.</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Takah Pandan Waterfall (S1)</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>Anak Selor River (S2)</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>Kuala Selor (S3)</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Downstream of Air Batu Dinding Waterfall (S4)</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>Lubuk Tapah (S5)</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Next to Base Camp (S6)</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>Opposite of Base Camp (S7)</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>Downstream of Base Camp (S8)</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>Ketiau Padi River (S9)</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>Tengkeboh River (S10)</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>Upstream of Kelembai River (S11)</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>Downstream of Kelembai River (S12)</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>Nearby Aboriginal Settlement (S13)</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF EQUATIONS

Equation 1: The formula for the FBI and GBI: ..54

\[
\text{FBI and GBI} = \sum x_i \cdot t_i / n
\]

Equation 2: The formula for the BMWP scheme:55

\[
\text{BMWP Values} = \sum t_i
\]

Equation 3: The formula for the ASPT score: ...55

\[
\text{ASTP} = \sum t_i / n
\]