A CASE TOOL FOR CODE INSPECTION

SITI HAJAR BINTI ALIAS

A dissertation submitted to the Faculty of Computer Science and Information Technology, University Malaya in partial fulfillment of the requirements for the degree of Master of Computer Science

JULY 2002
DECLARATION

I certify that this dissertation submitted for the degree of Masters is the result of my own research, except where otherwise acknowledged, and that this dissertation (or any part of the same) has not been submitted for higher degree to any other university of institution.

Signed:
Siti Hajar Alias
Date: 32/07/2002
ACKNOWLEDGEMENTS

It is my great pleasure to acknowledge the people who have contributed in the preparation of this dissertation.

In the first place, I would like to thank my supervisor, Associate Prof. Dr. Ow Siew Hock who has spent her valuable time in guiding me to prepare this dissertation and provides guidance, suggestions and constructive criticisms during the project development. Thank for your helpful discussions, cooperation and recommendations.

I would like also to take this opportunity to dedicate a special thanks to the encouraging and perceptive dean of the IT Faculty University Tun Abdul Razak (UNITAR) Prof. Dr. Khairuddin Hashim for his support and encouragement. I also would like to thank UNITAR for sponsoring my master program and provides a scholarship that has made this work possible.

Special thanks to my spouse Khalid Mohammad, without his persistence, insistence and encouragement got me through the difficult spot and made the not-so-difficult spots even a bit fun.

Warm thanks to all my adorable friends and colleagues, Hadzariah, Haslina, Azla, Norlaila, Rosnafisah, Suhaimi and Rafiq for giving me a full support and comment during my master program. I appreciate your patience, humor, creativity, moral support and editorial help. I am greatly indebted to your invaluable assistance since the early stages up to the last moment of finalizing this paper.

Also to my families whom from far have given their blessing and encouragement that I will always appreciate it.
ABSTRACT

Generally, quality and productivity play important roles in every software development life cycle. However, when discussing about quality and productivity, another function that synonym to distinguish these features is software inspection. Software inspection is generally accepted as a useful technique for finding errors in both documents and codes. There are several phases in software inspection and one of it is defect detection phase. This dissertation is to review the role of defect detection phases involved in the software inspection process. Thus, for this project, it focuses on the development of a prototype CASE tool for code inspection called CodeIns. CodeIns ensures that each line of codes are written complied with syntax of C language and also generates the inspection outcomes at the end of the code inspection process. This tool is designed for the client/server environment and the window-based development. It is used to web-enabled it for use in the intranet environment. The software used to implement this tool is Active Server Page (ASP), Dynamic Hyper Text Markup Language (DHTML), Microsoft Internet Explorer 5 (IE), JavaScript, VBScript and Flash. In conclusion, it is hope that this tool can help to inspect the source codes and from that, it can identify and reduce the syntax errors during source code writing.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ii

ABSTRACT
iii

TABLE OF CONTENT

LIST OF FIGURES

LIST OF TABLES

1.0 INTRODUCTION

1.1 OBJECTIVES
1.2 PROJECT SCOPE
1.3 OVERVIEW ON DEVELOPMENT STRATEGY
1.4 PROJECT SCHEDULE
1.5 REPORT OVERVIEW

2.0 LITERATURE REVIEW

2.1 INSPECTION PROCESS
2.1.1 FAGAN INSPECTION
2.1.2 STRUCTURED WALKTHROUGHS
2.1.3 HUMPHREY’S INSPECTION PROCESS
2.1.4 GILB AND GRAHAM INSPECTION
2.1.5 N-FOLD INSPECTION
2.1.6 PHASED INSPECTION
2.1.7 ASYNCHRONOUS INSPECTION
2.1.8 SUMMARY

2.2 CODE INSPECTION TOOL
2.2.1 EXISTING CODE INSPECTION TOOLS
2.2.1.1 ICICLE
2.2.1.2 DISTRIBUTED CODE INSPECTION SYSTEM
2.2.1.3 COLLABORATIVE SOFTWARE REVIEW TOOLS
2.2.1.4 HYPERCODE
2.2.2 COMPARISON OF EXISTING CODE INSPECTION TOOLS
2.2.3 SUMMARY

2.3 RESEARCH FRAMEWORK

3.0 SYSTEM ANALYSIS AND DESIGN

3.1 SYSTEM ARCHITECTURE
3.2 THE PROGRAMMING TECHNOLOGIES AND LANGUAGES
3.2.1 SCRIPTING LANGUAGE
3.2.1.1 JAVASCRIPT
3.2.1.2 VBSCRIPT
3.2.1.3 ACTIVEX DOCUMENT

Note: The page numbers are not included in the plain text representation as they are not relevant to the extraction of the natural text.
5.1.2 COST EFFECTIVE 75
5.1.3 USER ID AND PASSWORD 75
5.1.4 SIMPLE AND USER-FRIENDLY INTERFACE 76
5.1.5 HELP MODULE 76
5.2 SYSTEM LIMITATIONS 76
5.2.1 BROWSER LIMITATIONS 76
5.2.2 ID AND PASSWORD LIMITATIONS 77
5.3 PROBLEMS ENCOUNTERED 77
5.3.1 LACK OF EXPERIENCE IN WEB-BASED PROGRAMMING 77
5.3.2 TIME CONSUMING 77
5.3.3 PC AND NETWORK BREAK DOWN 78
5.4 SUGGESTIONS AND FUTURE ENHANCEMENTS 78
5.4.1 INTERACTIVE AND CONTEXT SENSITIVE HELP 78
5.4.2 SUPPORT VARIOUS POPULAR BROWSER 79
5.4.3 SUPPORT OF ANY INSPECTION PROCESS 79
5.5 CONCLUSION 79

REFERENCES
APPENDIX A
USER MANUAL
APPENDIX B
SOURCE CODES
LIST OF FIGURES

Figure 1.1 Prototyping Model
Figure 2.1 The original inspection process defined by Michael Fagan
Figure 2.2 The Structured Walkthrough process presented by Yourdon
Figure 2.3 The inspection process described by Watts Humphrey
Figure 2.4 The inspection process described by Gilb and Graham
Figure 2.5 The N-Fold inspection process
Figure 2.6 The Phased inspection process
Figure 2.7 The FTArm Asynchronous inspection process
Figure 3.1 CodeIns web-based architecture
Figure 3.2 Synchronous activities of CodeIns
Figure 3.3 Structure chart for CodeIns
Figure 3.4 General flow of CodeIns
Figure 3.5 Process flow of CodeIns
Figure 4.1 CodeIns Welcome Screen
Figure 4.2 Login Page Screen
Figure 4.3 CodeIns Main Menu
Figure 4.4 Inspect source code page
Figure 4.5 Login page screen
Figure 4.6 Unit test result – Valid User ID and password
Figure 4.7 Unit test result – Invalid User ID and valid password
Figure 4.8 Unit test result – Valid User ID and invalid password
Figure 4.9 Unit test result – Invalid User ID and invalid password
Figure 4.10 Example of system testing
LIST OF TABLES

Table 1.1 Project Schedule
Table 2.1 Summary of Fagan’s inspection phases
Table 2.2 Summary of the Structured Walkthrough phases
Table 2.3 Summary of Humphrey inspection phases
Table 2.4 Summary of Gilb and Graham inspection phases
Table 2.5 Summary of N-Fold inspection phases
Table 2.6 Summary of the Phased inspection phases
Table 2.7 Summary of the FTArm asynchronous inspection phases
Table 2.8 Summary of the function and features of existing tool code inspection
Table 3.1 Server Software Requirements
Table 4.1 Summary of Software Used
Table 4.2 Valid User ID and Password
Table 4.3 Unit Testing Detail
Table 4.4 System Testing Detail
Table 4.5 Forms available in CodeIns