CHAPTER ONE

INTRODUCTION

An inspection is generally accepted as a useful technique to find errors in both
documents and codes. The technique was originally devised by Michael Fagan over
twenty years ago at IBM and had proven to be an effective technique for design,
code and test phases (Fagan, 1976). Rigorously applied, inspections have beneficial

impact on the productivity and quality of software project development.

The research literature shows that there are several variants of this approach have
been proposed for improving inspection performance. These include the Fagan
Inspection (Fagan, 1976), Active Design Reviews (Parnas & Weiss, 1985), N-Fold
Inspection (Martin & Tsai, 1990) and Phased Inspection (Knight & Meyers, 1991).
The variation used depends on the document being inspected, past experience of

inspection, team preference and critically of inspection.

The benefits of inspection are direct consequence of its ability to be applied early in
the software development lifecycle, to prevent the migration.of defects to later
phases of software development and improve communication to the entire
development project team. The longer the defects remain in the system, the more
expensive they are to be removed. This is due to the fact that the cost of removing a
defect when the system is operational is up to 1000 times the cost of removal during

the requirement stage (Gilb and Graham, 1993). Inspections are cited as one of the

nine best practices for software management (Brown, 1996) and it appears at Level 3

of the Capability Maturity Model (Humprey, 1989).

This dissertation focuses on the development of a CASE tool for code inspection.
Code inspection is a formal read-through of a program by a group of people with the
aim of identifying problems with it and of sharing views on how it could be
improved (Kelly et al, 1992). Once an analyst or a programmer has planned and
created a program, inspection serves as a way to check for defects and acts to
improve the program. According to Fagan, inspection can save 9 to 25 percent of
development expense because defects are found before they spread and multiply
(Fagan, 1976). Therefore, code inspection should be used to judge the quality of the

source codes but not the quality of the people who write the source codes.

1.1 Objectives

The objectives of this research are as follows:
a. To develop a CASE tool for code inspection that can verify certain types of
syntax errors written in C programming language.

b. To generate the inspection results in listing format.

1.2 Project Scope

The scope of this research project covers the development of a prototype CASE tool
for code inspection. This tool known as Codelns, would ensure that each line of
codes written complied with C syntax. The Codelns will generate the inspection

outcomes at the end of the code inspection process.

13 Overview on Development Strategy

The strategy used in the development of Codelns is based on the software
prototyping methodology. This is because it allows all or part of a system to be
constructed quickly. This methodology is easy to understand, and can clarify
uncertain issues evolve and therefore, would reduce the risks in the development

process (Sommerville, 1995).

Prototyping model consists of six steps as shown in Figure 1.1. Like other
approaches in software development, prototyping begins with requirements
gathering. After identifying the known requirements, a quick design is then
formulated. The quick design focuses on the top-level architecture and data design
issues rather than on detail procedural design. The quick design leads to the
construction of a prototype. The prototype is tested and evaluated to refine
requirements. A process of iteration occurs until all requirements are formalized or

until prototype has evolved into a production system (Sommerville, 1995).

Prototyping model possess the following benefit: -

a. Requirements are clearly delineated and understood.
b. Important architectural design ideas are validated.

c. Critical user interface issues can be handled.

d. Feedback is available quickly and early in the project.

e. Systems developed can address users’ needs and expectations more closely.

Requirement Analysis

Quick Design

Construction of Prototype

Prototype Evaluation

Refine Requirements

I Engineer Product |§

Figure 1.1 Prototyping Model

1.4 Project Schedule

A systematic project schedule was planned to manage the time and tasks needed to

accomplish so that the project objectives can be achieved. Table 1.1 shows the

project schedule for Codelns development.

Table 1.1: Project Schedule

Key Activity July [Aug [Sept [Oct [Nov [Dec [Jan [Feb | March | Apr | May
01 01 01 01 01 01 02 02 02 02 02

Proposal [———|—,

Literature [

Review [

Requirement s

Analysis

System Design

Coding/
Prototyping

Testing

D

1.5 Report Overview

The purpose of this report is to document the essential data gathered and activities

performed throughout the development of the project. It covers the project studies

and analysis, the design of the software, development and testing stage of the system.

User manual of Codelns is included in the Appendix A of this report.

This report is divided into five chapters, which are described as follows:

Chapter 1: Introduction
This chapter gives an overview of the project, the project objectives and scope, and

development strategy used for this project.

Chapter 2: Literature Review

This chapter presents an overview of seven of the most common inspection processes
and introduces the basic concept of inspection. Comparisons of a number of tools
currently available to support code inspection are also mentioned in this chapter. The
advantages and disadvantages in the existing tools were identified and led to the

main areas of this research.

Chapter 3: Analysis and Design
This chapter includes the system analysis and design planning for the development of

Codelns.

Chapter 4: System Implementation and Testing
This chapter describes the development environment and tools used. The system

development and testing involved are also explained in detail.

Chapter 5: Conclusion and Rec dation

This chapter summarizes the contents of the dissertation and the contributions of the
development of Codelns. The numerous problems encountered and the solutions
taken during the project are highlighted here. Finally, it also discusses the strength,

limitations and further enhancements for Codelns.

