A CASE TOOL FOR UML via META-MODELING APPROACH

A thesis submitted to the
Faculty of Computer Science and Information Technology, University Malaya
in partial fulfillment of the requirements
for the degree of Master of Computer Science

By
ROSNAFISAH BINTI SULAIMAN

August 1999
Declaration

I certify that this thesis submitted for the degree of Masters is the result of my own research, except where otherwise acknowledged, and that this thesis (or any part of the same) has not been submitted for higher degree to any other university or institution.

Signed: ..
Rosnafisah Bt. Sulaiman

Date: 20. 9. 99
ACKNOWLEDGEMENT

It is my great pleasure to acknowledge the people who have contributed in the preparation of this thesis.

Especially to my very helpful and resourceful supervisor Dr. Lee Sai Peck (University of Malaya) who has spent her valuable time in guiding me to prepare this thesis and provides guidance, suggestions and constructive criticisms during the project development. Thank you for your helpful discussions, cooperation and recommendations.

I would also like to take this opportunity to dedicate a special thanks to the encouraging and perceptive dean of the IT Faculty University Tun Abdul Razak (UNITAR) Prof. Dr. Khairuddin Hashim for his support and encouragement. I would also like to thank UNITAR for sponsoring my master program and provides a scholarship that has made this work possible.

A special thanks to all my adorable friends and colleagues, especially to Zaidah, Rozi, Had, Aïda, Suhaimi, Rafiq, Faizal, Awang and Amirul for giving me a full support during my master program. I appreciate your patience, humor, creativity, moral support and editorial help. I am greatly indebted to your invaluable assistance since the early stages up to the last moment of finalizing this paper.
I would also like to thank my parents, Haji Sulaiman Ali and Hajjah Dayang Embong and all my family members especially, Abang Din, Kak Nora, Alang, Along and Dan for their support, patience, love and dedication in assisting me during my master program. I realized that the encouragement and wise advice (wisdom) have taught me that it is not impossible to make a dream into reality with strength and courage.

Finally, a very special thanks to Alik, who carried more than his responsibility whilst giving his love, encouragement, support and understanding.

Thank you very much.

Rosnafisah Binti Sulaiman
Faculty of Computer Science and Information Technology
University Malaya
50609 Kuala Lumpur
MALAYSIA
ABSTRACT

The idea of automating software development process has come true with the new technology called Computer Aided Software Engineering (CASE). The main objective of this project is to develop a CASE tool for Unified Modeling Language (UML) by using the meta-modeling approach. Meta-modeling can be described as a process to define a conceptual model of a modeling technique. The CASE tool which has been developed in this project is called UMLCASE. The metaCASE tool called MetaEdit has been used in the meta-modeling. It provides a concept called OPRR (Object, Property, Role and Relationship) to define the notation, syntax and semantics of various techniques of UML. The OPRR is used to model these techniques and then generate into their method definition language. The compilation process is done to check the consistency of each technique. There are eight techniques of UML, namely the Use Case Diagram, Class Diagram, Sequence Diagram, Collaboration Diagram, State Diagram, Activity Diagram, Component Diagram and Deployment Diagram. These techniques of UML have also been extended into the higher version of MetaEdit which is called MetaEdit+ 2.5. This metaCASE tool provides the GOPRR (Graph, Object, Property, Role and Relationship) concepts. For this version of MetaEdit+, the model elements were designed separately and combined into one diagram by the Graph tool. MetaEdit+ provides the editors that help to manage and design the techniques. Furthermore, this project has proved the effectiveness of the meta-metamodelling approach in defining the meta-model of UML techniques.
TABLE OF CONTENTS

DECLARATION ii
ACKNOWLEDGEMENT iii
ABSTRACT v
TABLE OF CONTENTS vi
LIST OF FIGURES xi
LIST OF TABLES xiii

CHAPTER 1 – INTRODUCTION 1

1.1 Objectives 2
1.2 Scope 2

CHAPTER 2 – LITERATURE REVIEW 4

2.1 Meta-Modeling 4
2.2 The Modeling Methods 5
2.3 Survey on Meta-Modeling Development 7
 2.3.1 The Booch Method 9
 2.3.1.1 The Process of Object-Oriented Development Using the Booch Method 9
 2.3.1.2 Concept and Construct 12
 2.3.1.3 Relationships in the Booch Method 13
 2.3.1.4 Techniques in the Booch Method 14
2.3.2 Object-Oriented Software Engineering (OOSE) 15
 2.3.2.1 The Process of Object-Oriented Development using OOSE 15
 2.3.2.2 Concept and Construct 16
 2.3.2.3 Relationships in the OOSE 17
 2.3.2.4 Techniques in the OOSE 17
2.3.3 The Object Modeling Technique (OMT) 19
 2.3.3.1 The Process of Object-Oriented Development Using OMT 19
 2.3.3.2 Concept and Construct 21
 2.3.3.3 Relationships in the OMT 22
 2.3.3.4 Techniques in the OMT 23

2.4 The Comparisons of Methods 24
 2.4.1 The Development Approach 24
 2.4.2 The Concepts 26
 2.4.3 The Relationships 28
 2.4.4 The Techniques 28
 2.4.5 Summary 29

2.5 CASE Tools 30
 2.5.1 MetaEdit Personal 1.2 30
 2.5.1.1 The Features of MetaEdit Personal 1.2 30
 2.5.1.2 The Structure of Meta-Metamodel Using OPRR Concepts 31
 2.5.1.3 The Modeling Process 32
 2.5.2 MetaEdit+ 2.5 33
 2.5.2.1 The Features of MetaEdit+ 2.5 33
 2.5.2.2 The Structure of Meta-Metamodel Using GOPRR Concepts 34
 2.5.2.3 The Modeling Process 36
 2.5.3 COMMA 37

CHAPTER 3 – THE TECHNIQUES OF UML 39

3.1 The Approach 39
3.2 Techniques in UML 41
 3.2.1 Class Diagram 41
 3.2.1.1 Semantics 41
 3.2.1.2 Notation 41
 3.2.2 Use Case Diagram 44
3.2.2.1 Semantics 44
3.2.2.2 Notation 44
3.2.3 Interaction Diagram 46
 3.2.3.1 Sequence Diagram 46
 3.2.3.1.1 Semantics 46
 3.2.3.1.2 Notation 46
 3.2.3.2 Collaboration Diagram 48
 3.2.3.2.1 Semantics 49
 3.2.3.2.2 Notations 49
3.2.4 State Diagram 51
 3.2.4.1 Semantics 51
 3.2.4.2 Notations 51
3.2.5 Activity Diagram 53
 3.2.5.1 Semantics 53
 3.2.5.2 Notation 53
3.2.6 Implementation Diagram 55
 3.2.6.1 Component Diagram 55
 3.2.6.1.1 Semantics 55
 3.2.6.1.2 Notation 55
 3.2.6.2 Deployment Diagram 56
 3.2.6.2.1 Semantics 57
 3.2.6.2.2 Notation 57
3.3 Summary 58

CHAPTER 4 – THE META-MODELING OF UML TECHNIQUES 59

4.1 Method Modeling Using The MetaEdit Personal 1.2 59
4.2 The Structure of the Meta-Metamodel of MetaEdit 60
4.3 The OPRR Modeling Process 60
 4.3.1 Meta-Model of the Use Case Diagram 61
 4.3.2 Meta-Model of the Class Diagram 62
4.3.3 Meta-Model of the Sequence Diagram 63
4.3.4 Meta-Model of the Collaboration Diagram 64
4.3.5 Meta-Model of the State Diagram 65
4.3.6 Meta-Model of the Activity Diagram 66
4.3.7 Meta-Model of the Component Diagram 66
4.3.8 Meta-Model of the Deployment Diagram 67

4.4 The Method Definition Tools 68
4.4.1 The Method Compiler 74
4.4.2 Notation 75
4.4.3 The Ordering of Definitions in Method Definition Language 78

4.5 The Method Modeling Using The MetaEdit+ 2.5 83
4.5.1 The Environment Management Tools 83
4.5.2 The Method Engineering Tools 86
4.5.3 The Symbol Editor 90
4.5.4 The Repository 91
4.5.5 The Outcome 91
4.5.6 The Code and Report Generation 92

CHAPTER 5 – EVALUATION AND CONCLUSION 96

5.1 System Evaluation 96
5.1.1 System Strength 96
5.1.2 Limitations 98
5.1.2.1 Limitations of the UML techniques of the UMLCASE Tool 98
5.1.2.2 Limitations of MetaEdit 99

5.2 Conclusion 100
5.2.1 Future Enhancement 100
5.2.2 Overall Conclusion 100
REFERENCES

APPENDIX A – INSTALLATION GUIDE
APPENDIX B – THE OPRR MODELING
APPENDIX C – CASE STUDY
APPENDIX D – THE METHOD DEFINITIONS
LIST OF FIGURES

Figure 2.1- Meta-Modeling and Modeling
Figure 2.2- Three Dimension of Meta-Modeling
Figure 2.3- Symbols that Represent Classes and Relationships in the Booch Method
Figure 2.4- The Class Diagram, Using the Booch Method
Figure 2.5- The Use Case Diagram of OOSE
Figure 2.6- The Object Model Using OMT
Figure 2.7- The Comparisons of Three Development Approaches
Figure 2.8- A Use Case model Using OPPR Concepts
Figure 2.9- The Use Case Diagram Using GOPRR Concepts
Figure 2.10- Inheritance diagram
Figure 3.1- The Class Diagram
Figure 3.2- The Use Case Diagram
Figure 3.3- The Sequence Diagram
Figure 3.4- The Collaboration Diagram
Figure 3.5- The State Diagram
Figure 3.6- The Activity Diagram
Figure 3.7- The Component Diagram
Figure 3.8- The Deployment Diagram
Figure 4.1- The Meta-Metamodel of MetaEdit
Figure 4.2- The OPPR Modeling of the Use Case Diagram
Figure 4.3- The OPPR Modeling of the Class Diagram
Figure 4.4- The OPPR Modeling of the Sequence Diagram
Figure 4.5- The OPPR Modeling of the Collaboration Diagram
Figure 4.6- The OPPR Modeling of the State Diagram
Figure 4.7- The OPPR Modeling of the Activity Diagram
Figure 4.8- The OPPR Modeling of the Component Diagram
Figure 4.9- The OPPR Modeling of the Deployment Diagram
Figure 4.10- The Incomplete Method Definition
Figure 4.11- The Complete Method Definition
Figure 4.12- The Point Coordinates
Figure 4.13- The Method Definition of Shape
Figure 4.14- The Shape Definition
Figure 4.15- The Symbol Definition of Ellipse Shape
Figure 4.16- The Symbol Definition of 'Stickman'
Figure 4.17- The Property Definition
Figure 4.18- The Object Definition
Figure 4.19- The Relationship Definition
Figure 4.20- The Role Definition
Figure 4.21- The Relationship Binding Definition
Figure 4.22- The Startup Launcher
Figure 4.23- Launcher
Figure 4.24- Diagram Editor
Figure 4.25- Matrix Editor
Figure 4.26- Table Editor
Figure 4.27- Object Tool
Figure 4.28- Property Tool
Figure 4.29- Property tool with Pop-up Menu
Figure 4.30- Relationship Tool
Figure 4.31- The Pop-up Menu
Figure 4.32- Role Tool
Figure 4.33- Graph Tool
Figure 4.34- Symbol Editor
Figure 4.35- Report Generation of the Use Case Diagram
Figure 4.36- The C++ Code Generation (*.h file)
Figure 4.37- The C++ Code Generation (*.cpp file)
LIST OF TABLES

Table 2.1- Metamodels Created of Different OOAD Methodologies
Table 2.2- The Concepts of the Booch Method
Table 2.3- The Concepts of OOSE
Table 2.4- The Concepts of the OMT
Table 2.5- The Comparison of the Concepts and Constructs
Table 2.6- The Comparison of the Relationships
Table 2.7- The Comparison of the Techniques