Immunologic Studies on GroEL Heat Shock Protein of *Salmonella typhi*.

By
Vijayaretnam Panchanathan

A dissertation submitted to
The Institute of Postgraduate Studies and Research,
University of Malaya, Kuala Lumpur
for the degree of Master of Philosophy.
ACKNOWLEDGEMENT

This thesis is dedicated to my parents and brothers, my two supervisors, my labmates, close friends (including S.T.D. et al.), all those who helped and generation after generation of scientists, for the continued guidance, patience, inspiration and love.
CONTENTS

Acknowledgements

Contents

List of Figures

List of Abbreviations

Abstract

Pages

1

II

V

VII

VIII

Chapter 1 Introduction

1.1 Typhoid fever

1.1.1 General features

1.1.2 History

1.1.3 Salmonellosis

1.1.4 Chronic carrier status

1.1.5 Salmonella

2

3

4

4

5

1.2 Clinical Manifestations

1.2.1 Gastroenteritis

6

1.2.2 Enteric Fever

7

1.3 Laboratory Diagnosis of Typhoid fever

1.3.1 Isolation and Culture

9

1.3.2 Serology

10

1.3.3 DNA detection

11

1.4 Pathogenesis of typhoid fever

12

1.5 Immune response to S. typhi.

15

1.6 Treatment

17

1.7 Vaccines

19

1.8 Heat Shock Proteins

22

1.9 Epitope Mapping

28
Chapter 2 Materials and Methods

2.1 Materials

2.1.2 Reagent solutions for ELISA
2.1.3 Serum Samples and Monoclonal Antibodies

2.2 Methods

2.2.1 Peptide Synthesis Procedure

2.2.1.2 Pre-Synthesis Preparation
2.2.1.3 Weighing Amino Acids and Activating Chemicals
2.2.1.4 F-moc Deprotection and Washing of Synthesis Pins
2.2.1.5 Coupling the N-α-F-moc –Protected Amino Acids
2.2.1.6 Subsequent Coupling and Washing
2.2.1.7 Acetylation of Terminal Groups
2.2.1.8 Side-Chain Deprotection

2.2.2 ELISA Testing

2.2.2.1 Conjugate Test
2.2.2.2 Primary Antibody Test
2.2.2.3 Quality Control

2.2.3 Removal of the bound antibody (“Disruption”)

2.2.3.1 Materials required
2.2.3.2 The “disruption” procedure
2.2.3.3 Analysis of Results

2.2.4 ELISA with GroEL heat shock protein
Chapter 3 RESULTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Quality Control</td>
<td>69</td>
</tr>
<tr>
<td>3.2 Optimization of the Modified ELISA Assay</td>
<td>70</td>
</tr>
<tr>
<td>3.3 Individual Sera</td>
<td>72</td>
</tr>
<tr>
<td>3.4 Consensus Plot</td>
<td>82</td>
</tr>
<tr>
<td>3.5 ELISA with purified GroEL</td>
<td>86</td>
</tr>
</tbody>
</table>

Chapter 4 DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1 Abbreviations Used for Amino Acids</td>
<td>134</td>
</tr>
<tr>
<td>Appendix 2 Patient Sera Profile</td>
<td>135</td>
</tr>
<tr>
<td>Appendix 3 List of Peptides Synthesized</td>
<td>136</td>
</tr>
<tr>
<td>Appendix 4 Synthesis Schedule</td>
<td>137</td>
</tr>
</tbody>
</table>

PUBLICATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>139</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Figure 1.1 Linker assembly</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.1 The nucleotide sequence of S. typhi groEL</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.2 Hydophobicity Plot (Hopp and Wood) generated based on the groEL sequence using the ExPasy program</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.3 The continuous hydrophilic region used for synthesis</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.4 The pins fitting onto a block</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.5 Numbering system used by the Multipin Peptide Synthesis software</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.6 The pins on blocks fit into a standard microtitre plate</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.7 General scheme for synthesizing overlapping 9-mer peptides of GroEL based on the multipin peptide synthesis technique</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.8 The blocks are placed downward with the pins totally immersed in the Disruption buffer in the sonicator</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.1 Control pins</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.2 Effect of Incubation time of the pins in the chromogenic substrate on the Optical Density</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.3 Effect of Disruption on the Optical Density</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.4 Sera 16 and 19 (typhoid positive) compared to a normal serum (26552)</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.5 Sera 20 and 22 (typhoid sera) compared to "NormLKY-18-2" (normal)</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.6 Sera 24 and 025 (typhoid sera) compared with sera "norm-SD" (normal)</td>
<td>75</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.7</td>
<td>Sera 031 and 034 (typhoid) compared with "LKY19-2" (normal)</td>
</tr>
<tr>
<td>3.8</td>
<td>Sera 041 and 043 compared with the monoclonal antibody to GroEL</td>
</tr>
<tr>
<td>3.9</td>
<td>Sera 049, 69159 and 84650 (all typhoid sera)</td>
</tr>
<tr>
<td>3.10</td>
<td>Sera 84993, M148 (typhoid sera) compared with sera "norm-18/2" (normal)</td>
</tr>
<tr>
<td>3.11</td>
<td>Sera M265 and sera M353 (both typhoid sera)</td>
</tr>
<tr>
<td>3.12</td>
<td>Consensus Plot (residues 1-151)</td>
</tr>
<tr>
<td>3.13</td>
<td>Consensus Plot (residues 151-245)</td>
</tr>
<tr>
<td>3.14</td>
<td>ELISA with purified GroEL</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

Standard scientific abbreviations were used. However the reader’s attention is drawn to the following:

% percentage
μl microlitre
(v/v) volume per volume
(w/v) weight per volume
ABTS 2,2’-azino-di(3-ethyl-benzthiazoline sulfonate)
DAB 3’,3-diaminobenzidine tetrahydrochloride
DCC dicyclohexyl carbodiimide
DMF N,N-dimethylformamide
DNA deoxyribonucleic acid
ELISA enzyme linked immunosorbent assay
F-moc 9-fluorenlymethoxy carbonyl
HOBt 1-hydroxy-benztriaole
IFA indirect immunofloresence
Ig Immunoglobulin
kDa kilodalton
LPS lipopolysaccharide
PBS phosphate buffered saline
PCR polymerase chain reaction
PIP piperidine
RNA ribonucleic acid
Trt trityl
Abstract

The Multipin Peptide Method was used to synthesize a series of 122, 9-mer peptides based on the published sequence of the *Salmonella typhi* GroEL on the surface of polyethylene pins. These peptides were then screened with a monoclonal antibody to GroEL, with human sera from patients with typhoid fever and with sera from normal healthy blood donors. Screening of the human sera identified three immunogenic epitopes, corresponding to peptides EGQDRGYSY, YSYNKETGE and GKGTEEEK. Screening of the peptides with the monoclonal antibody to GroEL identified another peptide, KGGKGTEEKE, which contains a common overlapping peptide GKGTEEEKEK. Identification and characterization of these epitopes would prove useful in delineating the biological and immunological functions of this protein and would aid in the development of better diagnostic tests and vaccines.