A MODEL OF COMPLIANCE ON THE QUALITY SYSTEM FOR SOFTWARE INDUSTRY BY ISO 9000 -3

A Thesis submitted to the Faculty of Computer Science & Information Technology University of Malaya In Fulfillment of The Requirements of the Degree of Master of Computer Science

Burhani Amirudin

Faculty of Computer Science & Information Technology University of Malaya 1999
ACKNOWLEDGEMENTS

I wish to express my appreciation and grateful thanks to my earlier supervisor Prof. Dr. Khairuddin Hashim for his advise, guidance and encouragement throughout my research and to my present supervisor Ms. Zarina Mohd Kasirun for her advise, guidance to complete and finalize my research.

To Mr. Muchlis Karanin dedicated my sincere gratitude for his valuable supporting.
I also wish to express my grateful feeling to my friend DR. Fashbir M.Noor Sidin, Lecturer at University of Andalas for his suggestion and assistance rendered.

A valuable thanks goes to Drs. Indra Yefitmon MA, who gave much assistance in doing translation the subject matter into English language as well as in making corrections on the use of English language properly.

I would also like to thank all my friends and staff of Faculty of Computer Science and Information Technology University of Malaya for their help and support during my research.

I wish to acknowledge the management of PT. Semen Padang for supporting me continuing the master degree program at Faculty of Science Computer and Information Technology University of Malaya.
Globalization, market orientation and competitiveness demand dramatic improvements in systems development productivity and quality. It suffices to say that the cost effective production of high quality software which meets user requirements, is the goal of every system of development project today. Management and control of software development are paramount in assuring that software products are built on time, within budget, and accordance with a stringent set of quality goals. A company that can produce higher quality goods uses fewer resources than those of other companies that will have the competitive edge in any kind of market. Producers of poor or average quality products with low productivity, whatever their past market shares, will loose ground in the face of competition. Quality and Productivity are the weapons that have to be utilized by any enterprising organization to win dominance in the global market as well as in the competitive market of the information age. The current software industry is facing numerous problems, such as continuing emphasis has been given in finding ways to solve the problems with the main focus on improving software development quality and productivity. One of the solutions to these problems is the implementation of Software Engineering tools and techniques, such as Computer Aided Software Engineering (CASE) Technology and CASE tools. But, up to now with the tools only, the software industry is unable to solve these problems completely. The industry has realized
that tools are not enough. One fact that the software industry has established is that "a fool with a tool is still a fool". In the 1990s, there are two main subjects on quality that capture the attention of most businesses in the world, namely the International Quality Management Standard ISO 9000 and Total Quality Management (TQM). This thesis addresses the current software problems and attempts to apply the new quality oriented methods, as characterized by Quality System Standard ISO 9001 and Total Quality Management. The Total Quality Management makes quality a way of focusing the organization on the competitive discipline of serving the customer totally. In the UK, a report by Department of Trade and Industry concluded that ISO 9001 was the best existing generic standard for software development. This standard is being adopted generally in world wide industry and a software derivative has been developed (ISO 9000-3). It is proposed a compliance quality system model for software development with ISO 9000-3 (ISAT903) as defined in the title as a conceptual combination of the Total Quality Management, Software Engineering concept and application of the Quality System Standard ISO 9000-3.
CONTENTS

1 INTRODUCTION

1.1 Software Development Problems 1
1.2 Software Engineering Concepts 4
1.3 Standard Software Process Improvement 5
1.4 Total Quality Management Concepts 6
1.5 Approach To Overcome Software Development Problems 7
1.6 Objective of The Project 7
1.7 Methodology .. 9
1.8 Contents of The Thesis 10

2 SOFTWARE ENGINEERING TOOLS & TECHNIQUES 12

2.1 Definition

2.1.1 Software .. 12
2.1.2 Software Engineering 13
2.1.3 Software Quality 14

2.2 Software Development Life Cycle 17

2.2.1 Waterfall Model 17
2.2.2 Boehm's Spiral Model 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Software Tools</td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>Definition of Tools</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Classification of Software Tools</td>
<td>23</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Case Technology and CASE Tools</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>QUALITY SYSTEM STANDARD</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>ISO 9000 Series of Standards</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>ISO 9001: 1994 (E)</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>ISO 9000-3: 1994</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>SEI Capability Maturity Model (CMM)</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>The Relationship between ISO 9001, ISO 9000-3 and SEI-CMM</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>BS- 5750 and SIRIM</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>TOTAL QUALITY MANAGEMENT</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Defining Total Quality Management</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Seven Principles of TQM</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>TQM in Software Development</td>
<td>53</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The History of TQM In Software Development</td>
<td>53</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The Role of Software Engineering In TQM</td>
<td>54</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The Difference between TQM and ISO 9000</td>
<td>54</td>
</tr>
</tbody>
</table>
5 REQUIREMENT ANALYSIS OF ISAT903

5.1 Analysis and Solution of Software Development Problems 56
5.2 Standard For Software Process Assessment 59
5.3 Requirement Specification 59
 5.3.1 Functional Specification 60
 5.3.2 Performance Specification 72

6 DESIGN OF ISAT903 75

6.1 Approach Used 75
6.2 Tools and Techniques Used 77
6.3 Data Flow Diagram of ISAT903 83
6.4 Data Dictionary and Data Element of ISAT903 83
6.5 Structured Chart of ISAT903 87

7 IMPLEMENTATION AND ASSESSMENT OF ISAT903 114

7.1 Implementation Approaches, Tools and Techniques 114
7.2 The Development of The Modules 116
 7.2.1 Main Module 117
 7.2.2 Assessment Section Module 119
 7.2.3 Reference Section Module 123
 7.2.4 Report Section Module 124
 7.2.5 Help Module 125
 7.2.6 Exit Module 127
7.3 Approaches and Strategies of Testing Used 128
7.4 Performance of ISAT903 129
7.5 Validation of ISAT903 133
7.6 Strength of ISAT903 135
7.7 Limitation of ISAT903 136
7.8 ISO 9000-3 Preparation and Implementation 137

8 CONCLUSION 140

References 143
Appendix A ISO 9000-3 148
Appendix B List of ISAT903's Screen 189
Appendix F The Relationship Between CMM, ISO 9001 and ISO 9000-3 209
Appendix D ISAT903 Manual 218
Appendix E Letter For Survey Questionnaire 225
Appendix F Customer Evaluation 226
LIST OF FIGURES

Figure 2.1 Software Definition 13
Figure 2.2 Software Engineering Principles 14
Figure 2.3 Software Quality Attributes 15
Figure 2.4 Software Development Life Cycle 17
Figure 2.5 Boehm's Spiral Model of Software Process 21
Figure 2.6 Quality of CASE Support For Software Process Activity 27
Figure 2.7 Tools, Workbenches and Environments 28
Figure 2.8 CASE System Life Cycle 31
Figure 3.1 Level of Maturity Based on SEI 42
Figure 4.1 Software Total Quality Management 52
Figure 4.2 The Differences Between TQM and ISO 9000 55
Figure 6.1 The Organization Structure of ISAT 903 76
Figure 6.2 Assessment Section 78
Figure 6.3 Example of The Questionnaire 78
Figure 6.4 Reference of ISO 9000-3 79
Figure 6.5 Help 80
Figure 6.6 Management Compliance Summary 81
Figure 6.7 Assessment Summary Report 82
Figure 6.8 Context Diagram of Compliance Model By ISO 9000-3 83
Figure 6.31 SC of Sub Module Document Control

Figure 6.32 SC of Sub Module Quality Record

Figure 6.33 SC of Sub Module Measurement

Figure 6.34 SC of Sub Module Rules, Practice, Convention

Figure 6.35 SC of Sub Module Tools and Techniques

Figure 6.36 SC of Sub Module Purchasing

Figure 6.37 SC of Sub Module Incl. Software Product

Figure 6.38 SC of Sub Module Training

Figure 7.1 Reusability Attribute

Figure 7.2 Management Compliance Summary

Figure 7.2 Assessment Summary Report
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Project Cost Overruns</td>
<td>1</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>20 Problems In Software Industry</td>
<td>3</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Benefits Obtained For Achieving ISO 9000 Certification</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Software Quality Attributes</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Functional Classification of CASE Tools</td>
<td>26</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Summary of ISO 9000 Series of Standard</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>The 20 Quality Elements of ISO 9001</td>
<td>35</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Cross Reference Between ISO 9000-3 and ISO 9001</td>
<td>38</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Higher Process Maturity Leads to Higher Productivity</td>
<td>43</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Evolution of TQM</td>
<td>48</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Seven Principles of TQM</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>The Ages of Quality</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>The Differences Between TQM and ISO 9000</td>
<td>55</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Questionnaires' Design</td>
<td>62</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Module Name and Function</td>
<td>76</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Data Dictionary of ISAT903</td>
<td>83</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Data Element of ISAT903</td>
<td>85</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>The Version Number For Development Process of ISAT903</td>
<td>114</td>
</tr>
</tbody>
</table>