LIST OF FIGURES

Figure	Title of figure	Page
1.1	Outline of approaches used to achieve the objective of this study	4
2.1	Clinical application of PDT	5
2.2	Photochemistry of excited photosensitiser after irradiation	7
2.3	Application of PDD in Clinic	8
2.4	The numbering of structure of a photosensitiser according to IUPAC	11
2.5	UV-Vis profile of a typical tetrapyrrolic compound	12
2.6	Structures of different cyclic tetrapyrroles and their UV-Vis patterns	13
2.7	Comparison of UV-Vis profiles of chlorophyll- <i>a</i> (blue) and chlorophyll- <i>d</i> (red) with molar extinction coefficient, ε of chlorophyll- <i>a</i>	14
2.8	Structures of chlorophyll-a and pheophytin-a	15
2.9	Formation of oligometric HpD from haematoporphyrin	16
2.10	Structure of phthalocyanine	19
2.11	Structure of lutetium texaphyrin (Lu-Tex)	20
2.12	Structures of 5,10,15,20-tetra(3-hydroxyphenyl)porphyrin and its chlorin derivative	21
2.13	Structure of benzoporphyrin derivative monoacid ring A	22
2.14	Structures of chlorin e6 and mono-L-aspartyl-chlorin e6	23
2.15	Structure of pheophorbide- <i>a</i>	24
2.16	Structure of palladium-bacteriopheophorbide-a	25
2.17	Structures of purpurin-18 and its oxidation product after oxidative cleavage in body	25
2.18	Structure of hypericin	26
2.19	Structure of hypocrellin and its derivative	27
2.20	Structure of tolyporphin	27
2.21	Structure of phycocyanin	28
2.22	Morphology of seaweed	30
2.23	Anti-cancer compounds derived from marine algae	35
3.1	The sites of seaweed collection	39
3.2	Example of typical PDT assay results observed in MTT screening	44
4.1(a)	The herbarium specimens of brown seaweeds	51
4.1(b)	The herbarium specimens of brown seaweeds	52
4.2(a)	The herbarium specimens of green seaweeds	53 54
4.2(b)	The nerbarium specimens of green seaweeds	54
4.3	Herbarium specimen of <i>Gracilaria salicornia</i> (red seaweed)	22 57
4.4	μ g/mL (dark control and irradiated plates) with pheophorbide- <i>a</i> (Pha) as positive control	57
4.5	Isolation and purification process for <i>Turbinaria conoides</i> extract	59
4.6	Viability of HL60 cells treated with 23 fractions collected from the	60
	first fractionation of <i>Turbinaria conoides</i> extract at 10 µg/mL	
4.7	UV-Vis profile of Tur-12-2	61
4.8	Pheophorbide- methyl ester (1)	63
4.9	UV-Vis profile of Tur-12-3	63
4.10	13^2 -hydroxypheophorbide- <i>a</i> methyl ester (2)	64
4.11	UV-Vis profile of Tur-19-1	65
4.12	LC-MS data of Tur-19-1	65

4.13	Pheophorbide-a (3)	66
4.14	Isolation and purification process for methylated extract	68
	Turbinaria conoides	
4.15	Viability of HL60 cells treated with nine fractions collected from	69
	the first fractionation of methylated extract of Turbinaria	
	<i>conoides.</i> The fractions were tested at $10 \mu g/mL$	
4.16	UV-Vis profile of Tur-me-2	70
4.17	LC-MS data of Tur-me-2	70
4.18	Purpurin-18 methyl ester (4)	71
4.19	UV-Vis profile of Tur-me-4-2	72
4.20	LC-MS data of Tur-me-4-2	72
4.21	UV-Vis profile of Tur-me-6-3	73
4.22	LC-MS data of Tur-me-6-3	73
4.23	UV-Vis profile of Tur-me-8-2	74
4.24	LC-MS data of Tur-me-8-2	74
4.25	13^2 -methoxyl-pheophorbide- <i>a</i> methyl ester (5)	75
4.26	Isolation and purification process for <i>Cladophora patentiramea</i>	77
	extract	
4.27	Viability of HL60 cells treated with eight fractions of the extract	78
	from Cladophora patentiramea. The fractions were tested at 20	
	μg/mL	
4.28	Comparison of HL60 cells viability for fraction 1,2 and 4 before	79
	and after methylation at 20 μ g/mL	
4.29	UV-Vis profile of Cla-me-1	79
4.30	LC-MS data of Cla-me-1	80
4.31	15 ¹ -methoxypurpurin-7-lactone methyl diester (6)	81
4.32	UV-Vis profile of Cla-me-4-2	82
4.33	LC-MS data of Cla-me-4-2	83
4.34	13^2 -hydroxypheophorbide-b methyl ester (7)	84
4.35	UV-Vis profile of Cla-me-4-3	85
4.36	LC-MS data of Cla-me-4-3	85
4.37	Possible isomers of 13^2 -hydroxypheophorbide- <i>b</i> methyl ester (7) and (8)	86
1 38	UV_V is profile of Cl2-me_A_5-A	88
4.30	U = V is prome of Cla-me-4-5-4	88
4.37	7-formul 15 ¹ -methoxynurnurin 7-lactone methyl diester (0)	90
4 4 1	Viability of HI 60 cells treated with isolated compounds at 5	91
1.11	ug/mL	71
4.42	Viability of HL60 cells treated with Tur-19-1 and Tur-me-2 at 10	91
	ug/mL	/1
5.1	Esterification of propanoic acid at C17 to its methyl ester form	95
5.2	Mechanisms of chlorophyll allomerization proposed by Hyninnen	97
0.2	and Hyvarinen	21